


6490 AID Front Matter  10/21/02  4:05 PM  Page ii



THE ART OF INTERACTIVE DESIGN
A Euphonious and
Illuminating Guide to
Building Successful Software

6490 AID Front Matter  10/21/02  4:05 PM  Page i



6490 AID Front Matter  10/21/02  4:05 PM  Page ii



THE ART OF
INTERACTIVE

DESIGN
A  E U P H O N I O U S  A N D

I L L U M I N AT I N G  G U I D E
T O  B U I L D I N G

S U C C E S S F U L  S O F T WA R E

Chris Crawford

San Francisco

6490 AID Front Matter  10/21/02  4:05 PM  Page iii



THE ART OF INTERACTIVE DESIGN. Copyright ©2003 by Chris Crawford.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

E Printed in the United States of America on recycled paper

1 2 3 4 5 6 7 8 9 10– 05  04  03

Trademarked names are used throughout this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Editorial Director: Karol Jurado
Cover and Interior Design: Octopod Studios
Composition: 1106 Design, LLC
Copyeditor: Judy Ziajka
Proofreader: City Desktop Productions
Indexer: Broccoli Information Management

Distributed to the book trade in the United States by Publishers Group West, 1700 Fourth Street, Berkeley, CA
94710; phone: 800-788-3123; fax: 510-658-1834.

Distributed to the book trade in Canada by Jacqueline Gross & Associates, Inc., One Atlantic Avenue, Suite 105,
Toronto, Ontario M6K 3E7 Canada; phone: 416-531-6737; fax 416-531- 4259.

For information on translations or book distributors outside the United States and Canada, please contact
No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415-863-9900; fax: 415-863-9950; info@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloguing-in-Publication Data

Crawford, Chris, 1950-.
The art of interactive design : a euphonious and illuminating guide to building successful

software / Chris Crawford.
p. cm.

ISBN 1-886411-84-0 (pbk.)
1. Interactive multimedia.  2. User interfaces (Computer systems)   I. Title.

QA76.76.I59 C73 2002
006.7--dc21

2002001562

6490 AID Front Matter  10/21/02  4:05 PM  Page iv



D E D I C A T I O N

To three friends who stood firmly behind me in my hour of need:

Laura Mixon, Veronique Raingeval, and Dave Walker.

6490 AID Front Matter  10/21/02  4:05 PM  Page v



6490 AID Front Matter  10/21/02  4:05 PM  Page vi



PART ONE: FUNDAMENTALS

Chapter 1
What Exactly IS Interactivity?

3

Chapter 2
Why Bother with Interactivity?

13

Chapter 3
Speaking

19

Chapter 4
Thinking

31

Chapter 5
Listening

45

Chapter 6
The Interactive Loop

69

Chapter 7
Architectures

75

PART TWO: DESIGN ADVICE

Chapter 8
Guidelines

93

Chapter 9
Anthropomorphization

113

Chapter 10 
Bloopers

119

Chapter 11
Clock Setting

139

Chapter 12
The Design Process

149

Chapter 13
Advice for Specific Fields

159

Chapter 14
Dedicated Devices

183

B R I E F  C O N T E N T S

6490 AID Front Matter  10/21/02  4:05 PM  Page vii



Chapter 15
Why Learn Programming?

191

Chapter 16
Soft Math

195

PART THREE: THEORY

Chapter 17
Process Intensity

207

Chapter 18
Linkmeshes

215

Chapter 19
Play

225

Chapter 20
Abstraction

243

Chapter 21
Indirection

253

Chapter 22
Linguistics

271

Chapter 23
Metaphor

291

Chapter 24
Anticipation

303

PART FOUR: SOCIAL AND
ARTISTIC ISSUES

Chapter 25
A History of Interactivity

313

Chapter 26
Control versus Interactivity

321

Chapter 27
The Two-Cultures Problem

329

Chapter 28
Interactive Storytelling

337

viii Brief Contents

6490 AID Front Matter  10/21/02  4:05 PM  Page viii



Brief Contents ix

Chapter 29
Subjunctivity

345

Chapter 30
Futures

359

Index
367

6490 AID Front Matter  10/21/02  4:05 PM  Page ix



C O N T E N T S  I N  D E T A I L

PA R T  O N E :  F U N D A M E N T A L S

1
W H A T  E X A C T L Y  I S  I N T E R A C T I V I T Y ?

Defining Interactivity 5
Degrees of Interactivity 6
No Trading Off 7

Things That Aren’t Interactive 8
Other Non-interactive Activities 9

User Interface 10
Graphic Design and Multimedia 12
Summary and Conclusion 12
Review Questions 12

2
W H Y  B O T H E R  W I T H  I N T E R A C T I V I T Y ?

It’s New! It’s Revolutionary! 14
It’s Tried and True! 14
It’s Better 15
It’s the Computer’s Basis of Competitive Advantage 16
It’s Unknown Territory 17

3
S P E A K I N G

A Note on Terminology 19
A Vast Accumulation of Expertise 20
Pixel Count 20
Screen Size versus Pixel Count 21
Color Depth 22
Frame Rate 24
Pop-up Animation 25
Full-Motion Animation 26
Sound Output 27

6490 AID Front Matter  10/21/02  4:05 PM  Page x



Contents in Detail xi

Speech Synthesis 27
Assembling the Pieces 28
A Final Warning 28

4
T H I N K I N G

Human Thinking Versus Machine Thinking 31
A Digression about Verisimilitude 33
Meanwhile, Back at the Ranch . . . 34
Algorithms 35
How to Create Algorithms 36
Some Useful Metaphors for Algorithm Creation 37

Spatial and Geometric Metaphor 37
Physical Metaphor 38
Musical Metaphor 38
Business or Economic Metaphor 38
Emotional Metaphor 39
Bureaucratic Metaphor 39

Data Structures 39
The Significance of Thinking 40
Closure 42

5
L I S T E N I N G

Natural Languages 46
A Visual Metaphor 46
Conversations with Computers 49
Anatomy of a Computer’s Ear 50

Single Button (Yes or No) 50
Joysticks 51
Keyboards 51
The Mouse 53
Hotspots 55
Voice Input 59
Other Input Devices 60
Light Pens and Other Devices 61

Language Design 62
Verb Specification 62
Menus 63
Maps 65
Gizmos 67
Complex Mouse Expressions 67
Extending Sequentiality 68

6490 AID Front Matter  10/21/02  4:05 PM  Page xi



xii Contents in Detail

6
T H E  I N T E R A C T I V E  L O O P

Searching by Keywords 71
Browsing by Hyperlink 71
Database Querying 72
Convergent Iteration 72
Measuring Information Flow 73
Human-Human Interaction versus Human-Computer Interaction 74

7
A R C H I T E C T U R E S

A Simple Interactivity Diagram 76
Foldback 79
Kill ‘Em If They Stray 80
Obstructionist Stories 80
Hand-Wired Storytree 81
Combinations of the Above 81

The Desirability of Bushiness 82
Broader Applications 82
Differences between Word Processors and Games: Two New Concepts 83

A Criterion for Excellence 84
Decreasing the Number of Conceivable States 85
Increasing the Number of Accessible States 88

PA R T  T W O :  D E S I G N  A D V I C E

8
G U I D E L I N E S

Start with the Verbs 93
Don’t Start with the Technology 95
Be on Guard against the Egotistical Tendency to Speak 96
Keep It Fast 97

How to Speed Things Up 100
Organize Verbs into Manageable Groups 101

Prioritize Verbs by Frequency of Use 102
Be Square 103
Design the Loop as a Whole 105
Don’t Set Up False Expectations 106

6490 AID Front Matter  10/21/02  4:05 PM  Page xii



Contents in Detail xiii

Say What You Mean 107
Speak with One Voice in Five Tones 108
Don’t Describe the Problem—Offer the Solution 111

9
A N T H R O P O M O R P H I Z A T I O N

With Whom Does the User Interact? 113
Every Day, In Every Way, Ever More Human 114
Use First and Second Person and Active Voice 116
Be Just as Courteous as You Would Be in Public 116
Use Normal English, Not Your Own Terminology 117
Don’t Feign Infallibility 117
Conclusion 118

10
B L O O P E R S

Overloaded Web Pages 119
Video 120
Stupid Thinking 120
Secret Icons 121
Delayed Response 123
Habituation Violation 124
Changing Things behind My Back 125
That’s Not My Department 127
Coelacanthous Messages 127
An Extended Blooper 128
Discussion 134
A Special Potshot 135

Some Background 135
Meanwhile, Back at the Ranch . . . The Tragedy Begins 136

11
C L O C K  S E T T I N G

Scheme A 140
Scheme B 140
Scheme C 140
Scheme D 141
Scheme E 142
Scheme F 143
Scheme G 145

6490 AID Front Matter  10/21/02  4:05 PM  Page xiii



xiv Contents in Detail

12
T H E  D E S I G N  P R O C E S S

Who’s the Designer? 149
The Project Team 150
Qualifications for the Interactivity Designer 152
Empiricism 152
Polish 155
Convergent Testing 155
Storyboards 156

13
A D V I C E  F O R  S P E C I F I C  F I E L D S

Game Design 159
Hand–Eye Coordination 160
Puzzles 161
Resource Management 162
Where to Go from Here? 162

Educational Software Design 165
Early Learning 165
Educational Simulation 166
Guidelines for Educational Software 166

Application Software Design 171
What Does the User Do? What Does the Computer Do? 171
Convergent Iteration 173

Website Design 175
Strategies for Improving the Web 176
Browsing 179

Last Thoughts 181

14
D E D I C A T E D  D E V I C E S

General Comments on Dedicated Device Design 184
RTFM 185
Speaking 186
Thinking 188
Listening 188

6490 AID Front Matter  10/21/02  4:05 PM  Page xiv



Contents in Detail xv

15
W H Y  L E A R N  P R O G R A M M I N G ?

Piece o’ Cake 192
Don’t Take No Shit 192
You Can’t Drive from the Back Seat 193
Understanding 193
Interactivity Designer as Go-Between 193

16
S O F T  M A T H

Soft Numbers 195
Soft Formulas 197
Blasphemy! 198
Applicability 199

An Example 200
Rules of Soft Math 202

PA R T  T H R E E :  T H E O R Y

17
P R O C E S S  I N T E N S I T Y

Duality 208
Nounism 209
Process Intensity and Data Intensity 210
The Crunch-per-Bit Ratio 210
An Objection 212
Personal Thinking Styles 213

18
L I N K M E S H E S

State Variables 218
Designing State Variables 219
Choosing State Variables 221
Historybooks 222

6490 AID Front Matter  10/21/02  4:05 PM  Page xv



19
P L A Y

A Naughty Metaphor 225
Historical Roots of Play 227
Evolution and Play 228
Play and Culture 228
Play and Language 230
Play and Mentation 230
Play Requires Safety 232
Prejudice against Play 232
Applying Play to Interactivity Design 233

Don’t Chastise Your User 234
Everything Must Be Completely Undo-able 235
All Experiments Must Yield Clear Results 237

Some Interesting Design Experiments I Have Tried 237
The Dark Side of Play 238

Agon in Paidaia’s Clothing 240

20
A B S T R A C T I O N

Financial Abstraction 243
Political Abstraction 246
Computational Abstraction 248
Biological Abstraction 249
Abstraction and Interactivity Design 250
Transforming Observation into Design Practice 251
Abstraction and Website Design 251
Abstraction and Educational Software 252

21
I N D I R E C T I O N

Constructs 254
Carrying Indirectors across Gaps 255

Step 1: CPU to Monitor 256
Step 2: Monitor to Eyeball 257
Step 3: Eyeball to Brain 258
Step 4: Brain to Hands 258
Step 5: Hands to Keyboard and Mouse 259
Step 6: Keyboard and Mouse to CPU 259

An Example of Constructs at Work 259

xvi Contents in Detail

6490 AID Front Matter  10/21/02  4:05 PM  Page xvi



Contents in Detail xvii

Indirection in Programming 259
Applying Indirection to Output 262
Communicative Power of Indirection 264
Putting Indirection to Work 266
Scripting Languages 266

22
L I N G U I S T I C S

Why Not Use Natural Language? 272
History of Language Design 273

A Short History of Language Design 273
Lessons from Linguistics 277
The Clipboard 278
Some Possible Approaches to Language Design 280

Inverse Parsers 280
Creole 283

Who Designs It? 286

23
M E T A P H O R

Metaphor Creation 297
Step 1 297
Step 2 297
Step 3 297
Step 4 297
Step 5 298

Putting Theory to Work 298

24
A N T I C I P A T I O N

Know Thy Partner 304
Designer-Level Anticipation 306
Variations on Anticipation 306
Levels of Anticipation 309
Privacy 309

6490 AID Front Matter  10/21/02  4:05 PM  Page xvii



xviii Contents in Detail

PA R T  F O U R :  S O C I A L  A N D  A R T I S T I C  I S S U E S

25
A  H I S T O R Y  O F  I N T E R A C T I V I T Y

Meanwhile, Back on the Earth . . . 318

26
C O N T R O L  V E R S U S  I N T E R A C T I V I T Y

Reversibility through Undo 324
An Alternative 324
Other Points of View 326
Turning It Around 327

27
T H E  T W O - C U L T U R E S  P R O B L E M

Techie Pinheads 329
Artsy Anger 330
Why Don’t Artists Program? 332
Closed A&H Minds 332
Tribalism 333
Software Sucks 333
The Gloomy Prospect 334
Prescriptions 335

28
I N T E R A C T I V E  S T O R Y T E L L I N G

What Interactive Storytelling Is Not 337
The Difference between an Interactive Story and a Conventional Story 338
Abstracting Storytelling 339
My Own Work in Interactive Storytelling 343

6490 AID Front Matter  10/21/02  4:05 PM  Page xviii



Contents in Detail xix

29
S U B J U N C T I V I T Y

Misogyny and Sequential Thinking 352
Here We Go Again 354

30
F U T U R E S

Technological Progress 360
The Perception of Adequacy 361
Human Limitations on Use 361
Design Expertise 362
Audience Development 362
Opportunistic Adjustment of Lifestyle and Workstyle 362
Complexity of Interrelationships 363
Winner Takes All 363
Putting the Pieces Together 364
The Short-Term Future 364
The Long Term: From Computing to Interactivity 364
Seven Lessons to Remember 365

Index
367

6490 AID Front Matter  10/21/02  4:05 PM  Page xix



R E A D  M E

This book is written for designers of interactive products. If this description fits
you, then you should read this book.

If you have no direct professional interest in interactivity design, but want to
understand something more about the significance of computers, you should
concentrate on Parts III and IV.

If you consider interactivity design to be a variation on traditional human fac-
tors design, then you should hurl this book away from you with vehement force;
its carefree disregard for the eternal verities of your field will only upset you.

This book was NOT written for programmers. If you want to learn the latest,
greatest, fastest techniques for 3D animation, this is NOT the book for you.

This book boasts (or suffers from) a discursive style, especially in the later
chapters. It’s not formal enough to be a textbook, nor is it a cookbook for those
who want to learn great design techniques in one reading.

This book is about understanding interactivity, not simply using it.
The breakneck pace of technology induces many designers to grab for quick

solutions. But it is precisely the torrid pace of development that requires us to
concentrate on understanding the fundamentals rather than snatching quickie
patches. Today’s solutions will be obsolete in a few years, but the fundamentals
(and this book) will still be useful decades from now.

This book will educate you, not train you.

6490 AID Front Matter  10/21/02  4:05 PM  Page xx



PART ONE
FUNDAMENTALS

6490 AID Chapter 1  10/17/02  1:34 PM  Page 1



6490 AID Chapter 1  10/17/02  1:34 PM  Page 2



1
W H A T  E X A C T L Y  I S
I N T E R A C T I V I T Y ?

The term interactivity is overused and underunder-
stood. I choose to define it in terms of a conversation: a

cyclic process in which two actors alternately listen, think,
and speak. The quality of the interaction depends on the

quality of each of the subtasks (listening, thinking, and speaking).
And many things commonly held to be interactive are not.

Interactivity is one of the buzzterms of the times and as such is much
abused. It’s not that interactivity was heretofore unknown; on the contrary, I
remember lengthy discussions on interactivity in the early 1980s. But the com-
puting community didn’t catch on to the importance of interactivity until
recently. In the early 1990s, I garnered plenty of derision by insisting that inter-
activity was the core idea of computing. 

So at least we’re buzzing in the right general direction. But popularity has
its costs, one of which is the way popular terms are given a different spin by
every user. The result is that the poor term ends up spinning one way and then
the other, becoming hopelessly dizzy with all the abuse. I’m reminded of the
wonderful story from The Martian Chronicles about a Martian who visits a town
of earthlings and is unable to prevent himself from transforming, chameleon-
like, to meet the expectations of everyone he encounters. Thus, overwhelmed by
these expectations, he dies from the frenetic effort.

6490 AID Chapter 1  10/17/02  1:34 PM  Page 3



4 Chapter 1

So it is with the term interactivity, yanked around so much as to be half-dead,
a pallid, bloodless nothingburger of a word. I’ll bet that one day you’ll walk into
the grocery store and find a box of laundry detergent with a big banner slashing
diagonally across its top, saying, “NEW! IMPROVED! INTERACTIVE!”

For example, take a gander at these photos:

Or consider this definition of interactivity offered in a popular book: “By
definition, the things people do on computers have always been interactive.”
Not very illuminating, is it? Or here’s another definition offered on a website:
“Interactivity . . . concerns itself with the various means by which human beings
implement actions.” Rather mushy, eh? 

So let’s start with a humbling realization: We really don’t have a clear idea
of what interactivity is. Plenty of people have slapped it onto their work and
tried to sell “The Same Old Same Old Stuff” as “New Interactive Technology!”
and, with all the hype, we’ve lost track of the word’s true meaning. But let’s not
be too hard on ourselves; after all, any word that can launch a book this heavy
surely has plenty of tricks up its sleeve. So let’s roll up our own and get to work.

6490 AID Chapter 1  10/17/02  1:34 PM  Page 4



What Exactly Is Interactivity? 5

Defining Interactivity

I used to think that definitions were important, sort of like linguistic rules of the
road, erected to keep people’s utterances from crashing into each other in a
demolition derby of language. But nowadays, I take a more easygoing view of
definitions. Any idea worthy of my attention is probably too big and too compli-
cated to be reduced to some schoolmarmish formula. The joy of thinking comes
from all of those fascinating nooks and crannies that lurk in nuance. My task as
a lexicographer is just as important as a cartographer’s, but I don’t see the
scenery by perusing a map; I get out there and walk the ground. Nevertheless, a
definition is a good way to get started, so I’ll draw the map first, and we can
start walking the ground later.

interaction: a cyclic process in which two actors alternately listen, think, and speak. 

I’m using the terms actors, listen, think, and speak metaphorically, although
the terms are literal to the most commonly experienced form of interactivity:
conversation. Conversations, in their simplest form, begin with two people, say,
Gomer and Fredegund. First, Gomer says something to Fredegund, at which
point the proverbial ball is in Fredegund’s corner. Fredegund then performs
three steps in order to hold up her end of the conversation:

Step One: Fredegund listens to Gomer, paying close attention to Gomer’s words
(we hope). She gathers in all of Gomer’s words and then actively assembles
them into a coherent whole, requiring effort on her part.
Step Two: Fredegund considers Gomer’s words. She contemplates and cogitates.
The wheels turn in her mind as she develops her response to Gomer’s statement.
Step Three: Fredegund responds to Gomer. She turns her thoughts into words
and speaks them.

Now the tables are turned, and the ball is in Gomer’s court. Gomer must
listen to Fredegund, think about what she is saying, and react. Then he must
express his reaction to Fredegund.

This process of conversation cycles back and forth, as an iterative process in
which each participant in turn listens, thinks, and speaks.

We can generalize this notion of the conversation as an interactive process
to any human interaction, although when we do, we must use the terms listen,
think, and speak metaphorically. If we want to get academic, I suppose we could
replace listen, think, and speak with input, process, and output, but that’s so
gauchely techie.

Here’s a key point about the interactive process: There are two actors, not
one. If I’m out in the woods and I hear to the sound of a tree branch breaking,
and I meditate on the implications of such a sound emanating from my zenith,
jumping out of the way just as the branch crashes to earth, I am not interacting
with the branch; I am reacting. This is a crucial factor that many, many people
don’t understand, and it leads to lots of silly designs. You can’t converse with a
brick wall. It takes two people to have a conversation, and it takes two actors to
have an interaction. If you, dear reader, were of an argumentative temperament,

6490 AID Chapter 1  10/17/02  1:34 PM  Page 5



6 Chapter 1

you might suggest that the branch is an actor. I will concede your point in the
most technical of senses: The branch does something, so it must be an actor. But
I am using the term actor in the more common sense of a purposeful creature.

Extending the branch argument, some claim that when you open a refriger-
ator and the little light inside turns on, and then you close the door and the
light turns off, you are interacting with the refrigerator because it responds to
your actions.

Now I suppose that a person graced with sufficient open-mindedness (several
cubic light-years’ worth!) could accept such an argument, but the box inside which
I think is a lot smaller than that. I have difficulty imagining Nintendo refrigerators
with millions of people all over the country opening and closing their refrigera-
tors for the sheer fun of it. Of course, if you want to get academic about this argu-
ment, then yes, the fridge listens (to the opening door), thinks (with all the
processing power of a single switch), and speaks (by turning on the light). But this
kind of interaction is silly and beneath the intellectual dignity of almost every-
body. I’m concerned with interactivity that has some blood in its veins.

The Nintendo refrigerator offers us some intellectual utility, however, even if
it can’t entertain us, because some people will, in fact, be entertained by playing
the refrigerator door game. As any exasperated mother will testify, small children
can find a refrigerator light more entertaining than a television. So here is our
puzzle: Is the refrigerator door game interactive or is it not? Surely it is interac-
tive for the small child, and just as surely is it not interactive for adults. Does
interactivity exist in the eye of the interactor? If my friend calls a rock interactive,
do I have any basis for challenging her? Is interactivity utterly subjective?

Plenty of people claim that everything is subjective, so I won’t try to con-
vince you if you belong to that tribe. But if you’re willing to grant the existence
of occasional objective truths, here’s an explanation that offers some practical
value for a designer.

Degrees of Interactivity

We tend to think of interactivity as a Boolean property (either you have it or you
don’t) like virginity. But why not think of interactivity as a continuous variable
with relative measures, more like our weight? In other words, we might speak of
interactivity as high, moderate, low, or even zero, thus solving our problem with
the subjective nature of interactivity. By using such measures, rather than the
simple either/or proposition, we make it possible to accept that anything can be
interactive and simply discuss the degree of interactivity subjectively. This, in
turn, gives us a happier solution to the refrigerator challenge: The refrigerator
does indeed interact with the user, but it does so at a low level.

But we still have a problem: How do we tell the difference between “high”
and “low” interactivity?

Let’s attack this problem by returning to our founding concept, the conver-
sation. After all, most of us have amassed a wealth of experience with conversa-
tion and should be able to agree on which factors contribute to a good, intense,
or rewarding conversation, and which factors ruin one. I’ll formulate those fac-
tors in terms of the three standard steps of the conversation we looked at ear-
lier, between Fredegund and Gomer.

6490 AID Chapter 1  10/17/02  1:34 PM  Page 6



What Exactly Is Interactivity? 7

Listening
If you want to have a good conversation, you have to listen well, and so does
your partner. How many times have you been caught in Pointless Conversation
Number 38, with someone who refuses to listen to what you’re saying? He nods
his head and smiles idiotically while you’re talking and then resumes his single-
minded lecture or reiterates the point you just demolished. Moving to the other
end of the scale, have you ever had the magical experience of conversing with
somebody who understands exactly what you are saying? The conversation soars,
and you want it to last forever.

Thinking
The next requirement for a successful conversation is that both actors think
well. This is fairly obvious; surely you can recall at least one conversation with a
slow thinker. He gives it his best: He knits his brows in determined attention, he
takes some time to let your words rattle around inside his head, but when his
mouth opens, the words that come out just don’t mean anything interesting.
While this poor dolt doesn’t anger us like the unlistening jerk, our conversation
with him is just as useless. 

The opposite extreme is also illuminating. I can recall several conversations
with Alan Kay, a red-blooded genius of a computer scientist if ever there was
one. I’d knit my brows and listen really hard as the ideas tumbled out of him
and washed all over me. Most of the time, I’d respond with a deeply-considered
“Yup,” because I just couldn’t keep up. But I’ll never forget The Day I Kept Up
With Alan Kay. He was talking about a subject in which I was thoroughly versed,
although from a different background. I kept hitting him with arguments from
my particular angle, and his ripostes were dazzling and fascinating. My mind was
reeling from the implications of his ideas, and he seemed to be enjoying our
conversation, too, which may be why he scowled when the phone interrupted us.
I can still feel the glow from that conversation. Good thinking can make a con-
versation sparkle.

Speaking
Here’s another obvious requirement for good conversation: You gotta spik good
if you wanna converse fust-class. Ever tried to communicate with your local com-
puter genius? Sure he’s bright and pays attention when you talk, but the hodge-
podge of acronyms and verbified nouns that he calls English might as well be
Hungarian (assuming you don’t speak Hungarian). This conversation with him
is dead on arrival; you thank him for his brilliant solution and resume banging
on your computer with your coffee cup.

No Trading Off

To interact well, both actors in a conversation must perform all three steps (lis-
tening, thinking, and speaking) well. Doing a good job with one of the three
steps does not compensate for a bad job with the other two. In each of the pre-
ceding examples, the failed conversationalist performed two of the three jobs
well but failed with the third, and that one failure was enough to botch the
entire conversation.

6490 AID Chapter 1  10/17/02  1:34 PM  Page 7



8 Chapter 1

The same principle applies to all forms of interaction. The most common
design error in interactive products arises from a failure to appreciate this prin-
ciple. The designer does a slam-bang job with two of the three steps but blows
the third step, believing that the strengths of the first two will outweigh the
weakness of the third. But one weak area in an interactive product (or a conver-
sation) is like a weak link in a chain. The chain breaks regardless of the strength
of the rest of the links.

Things That Aren’t Interactive

Let’s augment our definition of interactivity by discussing some things that
aren’t interactive. Printed books are my first target because you can’t interact
with them. A book can’t listen or think. It can only speak; it speaks its words as
we read them. It is therefore a combination of the worst traits of the jerk and
the idiot mentioned earlier.

Do you disagree? Just say the word! Don’t be shy, tell me what you really
think. It’s not that I don’t care, but I’m not listening to you and I can’t hear you;
I’m sitting in my office in Oregon, which may be hundreds or thousands of
miles away from you. Obviously, I also won’t be thinking about whatever it was
that you just said. 

Of course, if you’re frustrated, you are welcome to throw this across the
room, but even then, there still won’t be anybody listening to your frustrations
or thinking about them. [Editor: This is not a good place to put my email
address. Ha-ha-ha!]  {Reader: ccrawford@Inet.com—Heh-heh-heh.}

Many writers (as well as my publisher) will object to my assertions, because,
they argue, reading is indeed an interactive process. They point to the emo-
tional engagement one experiences when reading a book, and to the active state
of the reader’s mind while reading between the lines and interpreting meaning.

Their assertions are true, but they do not support a claim that reading is
interactive. Instead, they describe intense reaction, and interaction is not reac-
tion on a higher plane of existence. There exists no continuum with reaction at
one point on the continuum and interaction somewhere else. Interaction and
reaction are apples and oranges, horses of different colors, tigers of different
stripes. A stronger and stronger reaction does not transcend its nature and
become an interaction. You can turn up the reaction volume as high as you
want, but playing Beethoven’s Ninth Symphony at 20,000 watts does not make it
a painting.

The Greeks and Romans understood well the vast difference between the
non- interactive written word and the interactive spoken word, perhaps because
they were closer to the invention of writing and thus more sensitive to its weak-
nesses. For example, in Plato’s dialogue “Phaedrus,” Socrates says: 

“I cannot help but feel, Phaedrus, that writing is unfortunately
like painting; for the creations of the painter have the image of
life, but if you ask them a question, they remain silent. The
same may be said of words. You would think them to be intelli-
gent, but if you want to inquire further, and put a question to
the words, you always get the same words for an answer. Once

6490 AID Chapter 1  10/17/02  1:34 PM  Page 8



What Exactly Is Interactivity? 9

words have been written down, they are scattered everywhere,
among people who may not understand them, and may not
know whom to ask about them. If these words are misused or
misinterpreted, their creator cannot protect or explain them,
and they cannot protect or explain themselves.”

Cicero, in the Tusculan Disputations, Book 2, wrote “Certainly many exam-
ples for imitation can be obtained from reading, but fuller nourishment comes
from the living voice, as they say, especially the voice of the teacher.” Seneca
wrote, “The living voice and the intimacy of a common life will help you more
than the written word.” 

Other Non-interactive Activities

While dancing with another does provide an avenue of interaction, the interac-
tion is between the dancers, not between the dancers and the music. Dancing
alone to the music is not interaction; it is participation. The dancer doesn’t set
the beat or in any fashion provide feedback to the music makers (who could just
as well be a compact disc). Participation is not the same thing as interaction,
and really, really good participation isn’t “upgraded” to interaction. They’re dif-
ferent beasts.

Movies, too, garner a nix from me in the interactivity sweepstakes.
(Remember, I’m not arguing that interactivity is the sole gauge of merit; it’s sim-
ply a different dimension of measurement, and in that dimension, movies rate a
zero.) It’s not that I have anything against movies; some of my best friends are
movies. But as of this writing, you still can’t interact with a movie. How many
times has your heart protested as you watched the protagonist in a movie do
something disastrous? The car breaks down on a stormy night, and the only
house nearby is a dark, looming mass with pairs of red eyes peering out.
Nevertheless, our sprightly and fragile heroine gaily chirps, “I’ll just ask for help
at that nice house there!” Every bone in your body shrivels in terror at the
prospect, yet she obliviously marches straight to the house. 

If the movie were interactive, you might see our heroine pause and say,
“Gee, I think I heard somebody in the audience urging me not to enter the dark
house. I think I’ll take that advice.” But this never happens! The protagonist
always does that stupid thing that you or I would never do in a million years.
More important, the protagonist doesn’t listen to anything you say. You can beg,
you can plead, you can get down on your knees before the TV screen, but she’s
still going to knock on that creepy door with the gargoyle doorknocker. And
surely she’s not going to think about your protestations — when was the last
time you saw a videocassette engaged in deep contemplation?

So there you have it: Movies don’t listen to their audience, nor do they think
about what the audience may be saying. Like books, movies can only speak to
their audiences, and they do that very, very well. Let’s appreciate them for what
they are good at instead of press-ganging them into something they’re terrible at.

The situation changes slightly when we get into performance art. While it’s
obvious that a pile of paper, a strip of videotape, or a lump of rock can’t listen
or think, performance artists can. Capability is not the same thing as action; per-
formance artists seldom interact with their audiences at any deep level.

6490 AID Chapter 1  10/17/02  1:34 PM  Page 9



10 Chapter 1

I’ve often heard the claim that plays are interactive because the actors are
aware of the audience and allow its moods to affect their performance. This is
true, I suppose, but let’s be honest: Just how much time does an actor have to
listen to the audience, consider its mood, and modify his performance to better
satisfy the audience? I suppose that if you’re one of the guys holding a spear in
the background, you’d have the time, but if you’re playing Falstaff and you have
a few hundred lines of Elizabethan English to make intelligible to non-
Elizabethan Americans, I don’t think you’ll spend your time on stage gauging
the facial expression of each member of the audience and thinking how you can
improvise something better than Shakespeare. 

While actors are certainly capable of interacting with an audience, most
devote the vast majority of their considerable talents to the speaking part of
their jobs, not the listening part. Yes, plays can be said to be interactive, but I’d
give them about a 0.01 on the 10-point Crawford Scale of Interactivity.

N O T E An exception must be made for the modern experiments in interactivity, in which the
audience plays a more active role than usual. In one project, audience members are
guests at a wedding party populated with actors. These experiments certainly boast much
higher interactivity than traditional plays, and I expect that we shall learn interesting
lessons from them.

Other performers can sometimes obtain higher levels of interactivity.
Audience size is the most important factor in permitting interactivity in per-
formance art. Brute statistics make it impossible for one performer to meaning-
fully interact with thousands of fans, but as audience size shrinks, the statistical
factors become less adamant. We try to limit class sizes because smaller classes
afford more interactivity between student and teacher. The student-to-teacher
ratio is one of the best simple indicators of the quality of a school.

User Interface

Let’s be careful to differentiate the study of interactivity from some older fields,
such as human factors engineering, which arose from the time-and-motion stud-
ies of the early twentieth century. The goal of human factors is to increase the
productivity of industrial workers, and so, it places considerable emphasis on
formal experiments designed to measure the time it takes a person to perform a
task under controlled conditions. We’re talking about hard science here; aes-
thetic factors play no role because efficiency is this field’s sole concern.

The study of user interface is a modern offshoot of human factors. Its focus
is narrower, with the goal of optimizing the communications between people
and electronic devices. Consequently, some people prefer to refer to this as the
study of human-computer interface. Its focus is more on communication than
interactivity. 

Interactivity design, on the other hand, addresses the entire interaction
between user and computer. While it shares much with the study of user inter-
face, interactivity design differs because it considers thinking in the process of
optimization. The user interface designer optimizes the design towards the com-
puter’s strengths in speaking and listening, and away from its weaknesses in

6490 AID Chapter 1  10/17/02  1:34 PM  Page 10



What Exactly Is Interactivity? 11

these same areas. The user interface designer never presumes to address the
thinking content of software (the algorithms that determine its core behaviors).

The interactivity designer optimizes the design for all three dimensions of
interactivity; this entails additional balancing considerations and could conceivably
produce results that the user interface designer, using his narrower considera-
tions, would reject as incorrect. We can grasp the task of the interactivity designer
by regarding the thinking content of software as its function, and the user inter-
face as its form. In this frame of thinking, the user interface designer considers
form only and does not intrude into function, but the interactivity designer con-
siders both form and function in creating a unified design.

Another, more subtle factor that distinguishes the interactivity designer
from the user interface or human factors designer is the combination of genera-
tional factors and two cultural factors (see Chapter 27 for a discussion on the
wars between the science/engineering culture and the arts/humanities culture).
The human factors people have been in the business a long time, and have
developed a large body of truth for their field, most of it arising from experi-
ence with “big metal”: mainframe computers, weapons systems, power plants,
and the like. Their field is heavily “academized”: You must have a Ph.D. to be
taken seriously, and you spend a lot of time carrying out experiments to meas-
ure the efficiency of a design.

The user interface people tend to be less starchy. As a group, they’re
younger, less concerned with degrees, and sometimes less certain of themselves.
Their expertise arises from the two decades of experience the world has had
working with personal computers. Because the field is so rapidly changing,
there’s less confidence in eternal verities. And, like the human factors people,
the user interface people are stronger on the math/science side of the problem
than on the arts/humanities side of the problem. Indeed, most of them would
say, “What arts/humanities side?”

By contrast, interactivity design people tend to come more from the
“Webby” generation than the “Personal Computer” generation. They’re
younger, less technical, and stronger in the arts/humanities. They tend to be
less technically adept than the human factors or user interface people. 

Interactivity design faces an obstacle in the territoriality of the older and
established human factors and user interface people, whose work is valuable and
relevant. The problem is that user interface design is a more narrowly focussed
field than interactivity design, and yet the user interface people seem to resent
the intrusion of interactivity design into “their” field. They’re perfectly willing to
tolerate studies of interactivity — so long as those studies closely adhere to and
build on the established traditions of the user interface field. 

The pernicious effect of this attitude lies in its refusal to recognize the para-
digm shift implicit in interactivity design. Much human intellectual advance
arises from the steady refinement of an established set of ideas; occasionally,
however, progress is more readily achieved by rearranging established truths
under a new paradigm. Interactivity is such a new paradigm. Interactivity design-
ers do not deny the hard-won lessons of the past; they seek to incorporate them
in a wider perspective, which, in turn, requires some rearrangement. We must
incorporate the wisdom of older fields into the larger design framework of
interactivity.

6490 AID Chapter 1  10/17/02  1:34 PM  Page 11



12 Chapter 1

Graphic Design and Multimedia

The web has enticed a great many graphic designers and multimedia people
into the computer biz. These people have, in turn, provided a life-saving dose of
vitamin C to a deathly scurvied industry. Their expertise in applying aesthetic
considerations that improve the effectiveness of websites has opened the eyes of
a great many technical people.

Unfortunately, these creative people have yet to shake off some of the inap-
propriate predilections of their earlier careers. In particular, some seem to con-
fuse graphic design with interactivity design. While designing a visually effective
page certainly demands great skill and creativity, page design alone is only part
of the overall task of interactivity design. 

Another common misconception is that the design process can be broken
into two steps: the graphic design step and the “interactivizing” step. As you will
see in later chapters, this is a serious error because good interactivity design
integrates form with function. Those who cling tightly to the firm foundation of
their expertise in graphic design, refusing to let go and strike out into the briny
deep of interactivity design, will forever be graphic designers — not interactivity
designers.

Summary and Conclusion

I have offered a definition of interactivity. I don’t claim this to be the only good
definition, or even the best; I really don’t care to establish lexicographical domi-
nance over anybody. I do insist that this definition is useful: That is, it generates
guidelines for good design that make sense. Once interactivity becomes estab-
lished in our culture, the academics will get a hold of it, and then you’ll have
more “high-quality” definitions than you ever thought you needed.

Review Questions

1. Are rugs interactive? Explain in your own words why or why not.

2. Come up with your own damn definition of interactivity.

3. Throw this book across the room. Measure the distance it traveled and the
angle of impact. Draw appropriate conclusions in crayon.

6490 AID Chapter 1  10/17/02  1:34 PM  Page 12



2
W H Y  B O T H E R  W I T H

I N T E R A C T I V I T Y ?

Interactivity is important for designers because it is a
new and revolutionary communication medium, yet a

tried and true way to learn. Interactive communication is
superior to conventional, one-way communication.

Interactivity is also the computer’s intrinsic competitive advantage.
For artists, interactivity represents an exciting and unexplored field
of effort.

The computer is so good at so many things that we have difficulty discern-
ing the one factor that truly makes it unique. Remember desktop publishing?
Mobile computing? Multimedia? Connectivity? Workgroups? Full-motion, full-
frame video? 3D graphics? With all these fads and buzzwords inundating us, it’s
easy to lose sight of the enduring fundamental truth: Each new generation of
designers makes the same mistakes as the previous ones, and little forward
progress is made. Therefore, let’s look at the reasons why interactivity is of pri-
mary importance in the design of all things that are computer related.

6490 AID Chapter 2  10/21/02  11:26 AM  Page 13



14 Chapter 2

It’s New! It’s Revolutionary!

Let’s start with the obvious argument. Yes, interactivity is new and revolution-
ary, yet few realize the degree of novelty and the significance of the interactiv-
ity revolution.

Strictly speaking, interactivity as a deliberate behavior in animals is several
million years old; most mammalian infants learn basic skills through interactive
play (more on this in Chapter 25). What’s new is automated interactivity—inter-
activity effected by means of computing machinery. Mechanization has invaded
almost every aspect of human life, mostly to our great benefit, but human inter-
activity has resisted mechanization. 

Take the art of conversation, our most familiar form of interaction. Despite
the automated nature of today’s electronic world, the dynamics of a conversa-
tion between two people today are no different from those of a conversation
between Gilgamesh and Enkidu. While the carrier of that conversation has
changed, and conversations are carried on from one end of the world to the
other, the conversation’s interactive dynamics have not changed. Conversation
itself is still our fundamental means of communication. Email, interestingly
enough, has exploded into our lives precisely because it is an extension of con-
versation, yet it’s greatest weakness is the absence of conversational cues, leading
to embarrassing misunderstandings.

Automated interactivity, made possible by the computer, has made possible
a profoundly different kind of conversation. Human-to-human conversations
are driven by the differences in knowledge or opinion of the conversers. While
such differences may seem huge, they pale in comparison to the difference
between human and computer, because the computer’s thought processes are
stupendously different from a human’s. We can grasp emotional situations that
a computer could never comprehend; the computer can multiply two numbers
faster than we can read them. Which leap is greater: that from walking to jet
planes, or the leap from conversing with people to conversing with such an
utterly alien entity?

It’s Tried and True!

Yes, friends, not only is interactivity new and revolutionary, but it’s also tried
and true! As I’ll show in Chapter 25, it carries the seal of approval of millions of
years of natural selection; billions of satisfied customers from a broad range of
species will attest that it yields whiter whites than Brand X (schools) and fresher
breath than Brand Y (expository media). Herewith some actual testimonials:

6490 AID Chapter 2  10/21/02  11:26 AM  Page 14



Why Bother with Interactivity? 15

It’s Better

Interactivity is superior to all other forms of human expression in one way: it
engages the human mind more powerfully than any other form of expression.
When we truly interact with someone or something, we are truly engaged.

In contrast, non- interactive forms of expression do not hold our attention
so tenaciously. The greatest movie in the world can lose our attention to the
sound of munching popcorn; our involvement with a great book will surrender
itself to a buzzing fly. But interactivity wraps its tentacles around our minds and
doesn’t let go. Active, direct involvement always demands greater attention than

“My friends all laughed when I crouched down to challenge Spike; they didn’t know that 12
weeks of intensive play had given me lightning-fast reflexes!”

“I flunked Stalking 101; my teachers said I’d be eating kibbles for the rest of my life. But after
just two months of playing with my friends, I was stalking my teachers!”

6490 AID Chapter 2  10/21/02  11:26 AM  Page 15



16 Chapter 2

passive observation. As the Chinese proverb says, “I hear and I forget; I see and
I remember; I do and I understand.”

Well-executed expressions in other media will always outperform interactive
expressions in their superior texture, polish, and detail, but the interactive
expression has its own unbeatable advantage: people identify more closely with
it because they are emotionally right in the middle of it. 

It’s the Computer’s Basis of Competitive Advantage

The first rule in business is that you must identify your basis of competitive
advantage and then exploit it to the fullest. Let’s take me as an example. I’d be a
fool to go into business as a cabinet maker because I handle a file like a chain-
saw; I’m much better off speaking, writing, or pontificating on interactivity
design. And I don’t want to go into any business that mixes pontificating with
cabinet making, because that dilutes my basis of competitive advantage. 

The same rule applies to designing with the computer. Sure, the computer
can offer beautiful graphics, but any kid with a few bucks can pick up a calendar
with much better graphics. Sure, it’s got wonderful sound capabilities, but how
much does a music CD cost these days? Yes, the computer offers lovely video,
but for one measly dollar I can rent a videotape with much better video.
Software designers who try to compete with movies, music, or printed graphics
are guaranteed to lose. The one and only place where we can beat those other
industries is in our interactivity, so we should exploit interactivity to its fullest
and not dilute it with secondary business.

I’m not saying that we should eschew graphics, sound, or video; I’m saying
that we shouldn’t make these factors the selling points of our work. Winemakers
put their wine in bottles, and they make every effort to make those bottles
attractive, but I certainly wouldn’t buy from a winery whose advertisements
emphasize its lovely wine bottles.

People claim that the computer’s true essence lies in its ability to crunch
numbers, or handle mountains of information. While these are desirable fea-
tures, they don’t lie at the core of what makes the computer so important to our
civilization. Remember, we had plenty of number-crunching and data-cubbyhol-
ing computers in the 1960s and 1970s, but we don’t talk about “the computer
revolution” until the 1980s. The revolutionary new element was interactivity. 

Before personal computers, a computer was a frighteningly expensive
machine ensconced in special air-conditioned quarters, accessible to the user
only at a distance, and in batches. You submitted your “job” to the computer
operators, who took your punched cards into the sacred vault and fed them into
the computer, which “processed your job” and printed it all out on striped
green-and-white paper. You collected your printout hours after submitting your
job and went off to analyze your results. If something was wrong, you modified
your punched cards and tried again. If you were fortunate, you had access to a
data terminal that permitted you to communicate directly with the computer
through a 300-baud modem. This reduced the response time of computers
from hours to minutes—but even that was slow enough to destroy any sense of
interactivity.

6490 AID Chapter 2  10/21/02  11:26 AM  Page 16



Why Bother with Interactivity? 17

The personal computer revolution put a computer on every desk, thereby
reducing the response time to fractions of a second. You could organize your
data (numbers, formulas, or text) one way, examine the consequences, and try
something else, without ever drumming your fingers in frustrated waiting.
Interactivity had been strangled by slow computing; personal computers
unleashed viable interactivity and changed the world.

It’s Unknown Territory

Let’s suppose, though, that you are not some crass businessman concerned only
with base issues of profit and loss; let’s suppose that you are an artiste, complete
with beret, concerned only with the creative process. What great artist could
resist the opportunity to explore a completely new field of artistic endeavor?
This is the biggest artistic opportunity in history: a major new field is suddenly
opening up, and you’re one of the lucky generation to be in the right place and
at the right time to change the world. The doorway to each of the other Muses
was slowly pried open by the combined efforts of many artists; but the doorway
to interactivity was blown open overnight. Our interactive Bachs, Michelangelos,
and Shakespeares are probably out there right now, flunking school. We are liv-
ing in Florence during the Renaissance. Hey look! Wasn’t that da Vinci going
into that restaurant?

Interactivity is important, and deserves our attention, because it is new and
revolutionary, yet tried and true; it has communicative advantages no other
medium shares; it’s the essence of the computer revolution; and it’s exciting,
unexplored territory.

Personal computers changed all this, but not by merely putting a computer
on everyone’s desk. The revolution was driven by software, and if any program
can be singled out as contributing the most to getting the computer revolution
going, it has to be VisiCalc, the first microcomputer spreadsheet program.
Created by Dan Bricklin and Bob Frankston, VisiCalc was released in 1980, and
quickly became the biggest software hit of the computer industry. People bought
computers just to be able to use VisiCalc. 

There were spreadsheet programs on big computers long before VisiCalc
came along, but they didn’t change the world, because they offered poor inter-
activity. You punched up your budget figures, submitted your job, and waited
for the printout of your spreadsheet to come back. If you wanted to change a
number, you ran the program a second time, and it printed the new version of
your job. The whole process was slow and clumsy. In the best of circumstances,
you could run the spreadsheet program from a remote terminal and enjoy
response times of perhaps a minute—still too slow to be usefully interactive.

But VisiCalc permitted you to make changes and see the results instantly.
The unforeseen consequence of this was that businesspeople starting playing
around with their budget numbers, changing them willy-nilly to explore a vari-
ety of what- if scenarios. Suddenly, the spreadsheet became a powerful tool,
something every business needed. It wasn’t the number-crunching or data stor-
age that made these programs suddenly useful—those features were just as good
on the old mainframe spreadsheets. It was the interactivity that made this new
generation of spreadsheets so exciting.

6490 AID Chapter 2  10/21/02  11:26 AM  Page 17



18 Chapter 2

The same thing goes with word processing. There were plenty of “text pro-
cessing” programs on mainframes back in the 70s. They were almost useless;
you entered your text, ran the program, and then went to the computer center
to collect your printed output. The whole process was so slow as to make it use-
less. But with personal computers—especially the Macintosh, which first intro-
duced true WYSIWYG (What You See Is What You Get) word processing—you
could edit your document, see what it looked like on the screen, make a change,
and instantly see the result on the screen. The now-standard writing cycle of
read-edit- reread was unheard of in the 1970s.

The essence of the change is that the interactivity of the writing process has been
catapulted from ghastly slow to breathtakingly fast.

6490 AID Chapter 2  10/21/02  11:26 AM  Page 18



3
S P E A K I N G

We begin our close-up examination of the three steps
of interactivity with the most familiar: speaking.

Speaking, in the special sense that I use it in the definition
of interactivity, is the process by which the computer commu-

nicates to the human. It has two channels: visual and auditory. The
fineness of output is still not up to human sensory capabilities.

A Note on Terminology

I use the term speaking loosely to apply to any effort to move information from
one person to another. I could, of course, use the more precise term output, but
that would distance us from the definition of interactivity. Perhaps the defini-
tion should have been expressed not in terms of listening, thinking, and speaking,
but rather in terms of inputting, processing, and outputting. Such a change would,
I think, have led us in entirely the wrong direction, however. The problem we
face in getting computers to work better is not that humans need to become
more computer-like, but that computers need to behave in a more human-like
manner. We must impose human ways of thinking on the design process if we
are to make our designs more understandable to humans.

6490 AID Chapter 3  10/21/02  3:58 PM  Page 19



20 Chapter 3

A Vast Accumulation of Expertise

Humans have developed speaking into myriad special forms: literature, theater,
music, cinema, the visual arts, rhetoric, dance, and more. Humankind has accu-
mulated vast experience in expressing itself. If you add up all the people in the
world engaged in creating such works (writers, teachers, graphic artists, poets,
musicians, moviemakers, actors, dancers, journalists, and poets), then surely you
would obtain a sizeable fraction of the earth’s population. We sure do spend a lot
of time speaking. This is understandable; speaking is the primary means of trans-
mitting culture, and we 6 billion have developed a lot of culture to transmit.

When we first began to build software, we rushed to apply this vast expert-
ise in speaking. It was difficult in the early days; computers had lousy visual and
auditory outputs. But computers have come a long way, and we are no longer so
tongue-tied. There are now four measures of the expressive power of a com-
puter: pixel count, color depth, frame rate, and sound output.

Pixel Count

Pixel is a miscontraction of the technical term picture element, which in turn is a
single dot on the screen. I suppose that the alteration of the contraction is a
happy one; imagine how you’d feel if I asked you how many pickels you have on
your screen.

The image on a computer display is composed of thousands of tiny square
pixels. Some are white, some black, some red, some blue, and so on. The pixels
form a complete image. On a typical computer screen, each pixel is about a
third of a millimeter wide—just small enough for your eye to combine groups of
pixels smoothly. Back in the early days of computing, pixels were about a mil-
limeter wide, and you could really see the graininess:

More pixels permit more image. For example, the text above uses only
9,282 pixels. This is how the same text appears on my display screen, drawn to
the same scale:

This image, however, requires 32,308 pixels. As you can see, more pixels
permit a better-looking image. Or they can be used to provide more low-
resolution text. Either way, more pixels means more image.

6490 AID Chapter 3  10/21/02  3:58 PM  Page 20



Speaking 21

Screen Size versus Pixel Count

Some people prefer to think in terms of physical screen size rather than pixel
count. To their way of thinking, a 21- inch screen is 50 percent bigger than a
14- inch screen and has 225 percent of the surface area, so it is more than twice
as good as the 14- inch screen. And in fact this is correct, so long as we are com-
paring pixels of the same size. The confusion arises from the fact that most dis-
play systems offer the user a variety of screen resolutions. The user can have a
great many tiny pixels or fewer large pixels. I think that pixel count is a more
useful measure of what we interactivity designers must work with. It is true that
some monitors permit tiny pixels and thereby cram a great many into a small
screen, but I regard this as a secondary exception; most people don’t bother to
use those resolutions. The proper measure is how many pixels the user can see
at his preferred size. And of course, a bigger screen always permits more pixels.
But remember, we’re working with pixels, not inches.

Back in the early 1980s, most computer displays used television screens and
so offered screen sizes of 480 horizontal pixels and 320 vertical pixels, although
at these high resolutions, the pixels were smeared horizontally. This amounted
to 153,600 pixels. The first Macintosh in 1984 offered 512 horizontal pixels by
340 vertical pixels, or 174,080 pixels. By the early 1990s, screen displays were up
to 640 horizontal pixels by 480 vertical pixels, for a total of 307,200 pixels (307
kilopixels). Currently, the market has settled on 17- inch screens with resolutions
of 800 by 600 (480 Kpx) or 1024 by 768 (800 Kpx). I expect that we shall creep
up to a megapixel over the next few years. The limiting factor is not in the sili-
con chips; the memory needed to display a megapixel is 4 megabytes, currently
priced at under $40 retail. The limiting factor is now the monitor: as I write
this, a 17- inch monitor costs about $300, and a 21- inch monitor costs $800.
Prices of monitors have been coming down over the past decade, but with
nowhere near the precipitous plunge that is typical of silicon chips. Therefore,
my hunch is that interactivity designers should be able to count on and design
for a full megapixel of screen capacity by 2003.

Why is this important? Because computer displays speak to the human eye,
and therefore, for optimal results, it is important that output capacity of the dis-
play match the input capacity of the eye. Our visual systems suck in information,
and the straw through which they suck in that information should be neither
too small nor too large.

Unfortunately, it is impossible to precisely calculate the input capacity of the
human eye, because the human visual system is marvelously optimized for a
dynamic, three-dimensional world. We can get a handle on the problem, how-
ever, by considering the lessons we have learned from the two-dimensional
world of reading. Newspapers are printed at 600 dots per inch (dpi) and books
at about 1200 dpi; the highest-quality printing uses about 2400 dpi. For our pur-
poses, we can safely use 1200 dpi as our working figure for the resolution of the
human eye. Compare this with the 80 dpi that is common on most computer
screens today, and you can see that we have a long way to go. 

But there’s another critical factor to consider: the effective visual field of
the eye. This is especially difficult to estimate because the eye is in constant

6490 AID Chapter 3  10/21/02  3:58 PM  Page 21



22 Chapter 3

motion, darting all over the image, gathering information as needed. Our guide-
line here shall be the standard sheet of paper at 8.5 inches by 11 inches. Since
we must read all the way across the page for each line, let us guess a standard
visual field of 7 inches in width. However, our field of view is not symmetric; we
tend to see horizontally better than vertically. This is why televisions and movie
theater screens are wider than they are tall. The ratio of width to height is called
the aspect ratio, and it varies from 1.77 for a television screen to 2.38 for a movie
screen. Let’s take an intermediate value of 2.00 for our assumed aspect ratio.
Combining this with our other figures leads us to calculate 35 megapixels for
the working area of the human eye. Compare this figure with the half-megapixel
we get with the typical computer monitor, and you can see why most people pre-
fer to print a long chunk of text rather than read it directly on the screen.

Consider the difference between the number of pixels the eye would like to
see (35 Mpx) and the number we can feed it (< 1 Mpx), and you can see why
these considerations are important. Our users are starving for pixels! It is vital
that we software designers make best use of every single pixel we have.

Unfortunately, we can’t wait for technology to bail us out of this problem.
With current technology, a 35-megapixel monitor would measure about 100
inches (8 feet) diagonally with an extrapolated cost (if it were technically possi-
ble, which it isn’t) of about a quadrillion dollars. Even if Moore’s Law applied to
monitors (which it doesn’t), it would take 50 years to get the price of such a
monitor down to $1,000.

I will not offer advice on screen layout; this is a well-understood variation of
conventional graphic design. You can find many books about graphic design;
this book is about the rarer topic of interactivity design. However, there is an
immense difference between traditional graphic design and computer screen lay-
out: the computer screen can change in the blink of an eye, while paper images
are forever. Thus, traditional graphic design presents us with a good starting
point for screen layout, but it does not take us far enough. The role of anima-
tion in screen function is crucial to good interactivity design. You will find more
on this issue in the discussion of frame rate.

Color Depth

The next major factor in computer output is color depth. This is the fineness of
shades of color that our screen can present. If you have two screens with the
same number of pixels, but the first screen has more color depth than the sec-
ond, then you can display more information on the first screen. For example,
you can show text at a smaller font size, and it looks better:

6490 AID Chapter 3  10/21/02  3:58 PM  Page 22



Speaking 23

This is what the preceding text looks like magnified:

This example shows the letter “l” in italic; the left character is in 1-bit
mode, and the right is in 4 -bit mode. The angled line of the letter on the left
doesn’t line up neatly with the gridwork of the pixels, so we see a blocky image;
this problem is called staircasing. The letter on the right uses intermediate-value
grays to suggest parts of the line, and when you look at it in its proper size, it
looks much better:

Thus, displays with more color depth can present more information to
the user.

Anti-aliasing is now standard on screen displays, especially word processors;
only the older, slower machines are incapable of handling anti-aliasing.
Be aware, however, that many older books on screen layout did not take anti-
aliasing into account.

Color depth is measured in bits of color resolution. The absolute lowest
level of color depth is 1 bit: black and white. The lower sample text was written
with 1 bit of color resolution. An 8 -bit display can present 256 colors; a 16-bit
display offers 65 thousand colors; 24 bits yields 16 million colors. We can con-
gratulate ourselves and thank the monitor designers for having attained ade-
quacy; the 24-bit display (now common) offers more color depth than the
human eye can perceive. Thus, unlike pixel count, the color depth of our display
screens is good enough as far as the human eye is concerned.

With 16 million available colors, we can display natural-looking photographs
and other artwork, but the most common benefit of all those colors lies in anti-
aliasing: the fine shading of pixels at the edge of a line to suggest angles not dis-
played properly on a tessellated display. Here’s another example showing more
closely how anti-aliasing works:

6490 AID Chapter 3  10/21/02  3:58 PM  Page 23



24 Chapter 3

Frame Rate

The next major factor in computer output is frame rate, the speed with which
animations can be run on the computer. Much of the excitement over multime-
dia arose when computers crossed the speed threshold for a reasonable frame
rate, about 16 frames per second. This was the standard for the old black-and-
white movies; it is obviously jerky, but the eye can tolerate it. The current stan-
dard for movies, 24 frames per second, works fine for most people. Televisions
use a weird scheme that makes their frame rate hard to define; a programmer
would call it 30 frames per second, and a marketing person would call it 60
frames per second, and they’d both be right.

The frame rate a computer can achieve depends on the size of the animated
frame. Because a computer can move only so many pixels per second, a big
frame with a lot of pixels takes longer to assemble than a small frame with few
pixels. 

N O T E The not-Impossible Dream here is for full-screen, full-motion (FSFM) video, which also
assumes full color depth as well. This would mean that your entire screen could be
animated at 30 frames per second; in other words, someday your expensive computer
might become powerful enough to do what your television does. As yet, this ideal
remains a dream, but we’re getting close; I reckon we’ll be popping champagne corks in
a few years. 

From the point of view of an interactivity designer, animation might be
thought of as a means for squeezing more utility out of each screen pixel. After
all, it is possible to change each pixel 60 times per second; thus, in a single sec-
ond, you could theoretically display 60 screens worth of information. Even a
small 800 by 600 monitor could put out 28.8 Mpx per second! Now that’s
expressive power! Unfortunately, there is a catch: the human eye doesn’t work
that way; animating the screen that way wouldn’t work. Fortunately, we don’t
need to push matters to this extreme; a great deal can be accomplished with
much less ambitious designs. The key point of this paragraph is that animation
is not some magical element existing in isolation from all other components of
the design; it is instead just one more way to communicate information—to
speak—to the user.

To use animation effectively, we must again consider the capabilities of the
human visual system. Our eye sees randomly flickering pixels as “television
snow”—you might be presenting the encoded complete text of, say, the user
manual for Microsoft Word, or some other humongous document, but to the
eye, it’s just a snowy mess. Our eyes are optimized to recognize certain types of
motion, and those are the types that you must use in your designs. Here are
some of the animations that the human eye is keyed to recognize:

Translation: Objects moving across the field of view.

Expansion/Contraction: Objects expanding or contracting; this is perceived as
approach or recession.

Brightening/Dimming: Objects growing brighter or dimmer; this is perceived as
approach or recession.

6490 AID Chapter 3  10/21/02  3:58 PM  Page 24



Speaking 25

Vibration: Objects moving small distances in a fast and regular pattern.

Rotation: Three-dimensional objects appearing to rotate.

Facial animation: The visual system has special facilities for recognizing facial
expressions.

These are the fundamental animation components you have to work with.
However, two constraints must be kept in mind. First, temporal discontinuity is
not good. An animation shouldn’t simply pop from one image to a completely
different one. The visual system has all sorts of algorithms built into it that
assume a continuous universe; if something pops up instantly, the visual process-
ing system is momentarily befuddled. Windows 98 incorporates this design con-
cept in its menus, which quickly expand out of their source rather than simply
popping up.

The second constraint upon your use of animation is its power as an attract-
ing annunciator. Whenever something flashes or blinks, our eyes are attracted
to it. That’s very useful when we want to insist upon getting our user’s attention.
It’s very bad when some minor animation distracts the user from the task at
hand. An overly animated display looks—literally—busy. For example, in one
commonly used program, if you happen to leave the cursor over an icon, then
that icon’s little explanation phrase (known as a tooltip) will pop up and remain
there. If you then start typing, each keypress turns off the little explanation
phrase, which then pops back up after every pause of a few seconds. Thus, at
the instant you pause to consider a phrase, that damn pop-up distracts your
attention—a perfect example of animation-distraction.

Pop-up Animation

The most commonly used animation technique seldom strikes us as animation:
the use of pop-up displays. Pop-up displays take many forms: pop-up menus,
tooltips, help bubbles, even dialog boxes and alternate windows are part of
this family. The underlying concept is simple: the screen display is not two-
dimensional, but two-and-one-half dimensional. We imagine the display to be a
stack of partially overlapping planar images, which we can bring to the fore with
various commands. This change of display is the simplest form of animation,
but it multiplies the number of pixels available. A single text option embedded
in a pop-up menu occupies perhaps 2,000 pixels; if that pop-up menu contains
just ten items, it offers an additional 20,000 pixels of almost free screen space.

The tooltip is a single word or short phrase meant to explain the meaning of
an icon. It is most often activated by leaving the mouse motionless over an active
icon for longer than about a second; this causes the tooltip to pop up under-
neath the icon. What puzzles me is that designers have stopped short in utilizing
this idea. If you can pop up a short phrase, why not pop up a full sentence, or a
whole paragraph? In fact, this idea has been implemented and is called a help
bubble. Whereas a tooltip gives us a few hundred free pixels, a help bubble
grants us several thousand free pixels. The capability to provide help bubbles is
built into both the Mac and the Windows operating systems, yet most software
designers seem content with tooltips. 

6490 AID Chapter 3  10/21/02  3:58 PM  Page 25



26 Chapter 3

One would expect that well-designed applications rely heavily on these pop-
up techniques to increase their effective screen space many times over, but such
is not the case. My examination of a variety of software applications reveals a
ratio of this virtual screen space to real screen space ranging from 75 percent to
250 percent. I am pleased to report, though, that the more modern programs
tend to have the larger ratios. However, the great majority of this virtual screen
space takes the form of plain drop-down menus and their secondary menus. As
yet, pop-up menus, tooltips, and help balloons are little used to multiply effec-
tive screen space. 

The design problem we face in implementing pop-up systems lies in defin-
ing a clean command system for the user to bring up these secondary image
planes—but I’ll address such issues in Chapter 5, “Listening.” 

Full-Motion Animation

There is one application of animation for which discussions of user control are
less important: the playing of video. The central issue is that the user can’t inter-
act with canned video, other than using the standard controls such as start, stop,
single-step, rewind, and so forth. True interactive pre-recorded video is a con-
tradiction in terms. As soon as you start thinking about interrupting that care-
fully controlled video stream pouring from the DVD player, design hell breaks
loose. How often will you permit the user to interrupt the video? What if the
user interrupts it at an inconvenient time? If the user interrupts the video
stream because s/he desires to interact with it, how can you respond if the only
video you have is the canned stuff? What can you do with a video stream other
than play it non- interactively? If you want to design software that turns a com-
puter into an overpriced DVD player, by all means do so, but you might want to
ask yourself, what’s the point of your efforts?

I have seen a great many attempts to deal with this problem, and none of
them impress me. The best relegate the video stream to a minor role in the
overall interaction. The primary imagery is calculated by the CPU itself; because
it is algorithmic, it can be interactive. In other words, the user interacts with the
little stick figure running around in the foreground, while magnificent video
plays irrelevantly in the background. Occasionally the video does change, per-
haps in response to the user’s change of environments. In these uses, video
works well because it’s not getting in the way of the interaction. 

The only general-purpose way to tackle full-motion animation is to calculate
the images on the fly. The first decent example of this was the computer game
Doom—which is one reason why it was such a sensational success. By cleverly
constraining the types of images handled, the designers were able to achieve
FSFM video that was calculated in interactive response to the user’s actions.
Unfortunately, without those clever constraints, the calculation of most imagery
in real time remains at the fringes of research. Some impressive results have
been achieved with certain kinds of imagery, but the ability to calculate in real
time the entire image set for, say, Jurassic Park remains out of reach.

6490 AID Chapter 3  10/21/02  3:58 PM  Page 26



Speaking 27

Sound Output

The most important use of sound is to demand attention. A user’s eyes may
wander wheresoever they please, but sounds reach out and grab even the least
attentive user. Unfortunately, little progress has been made in this elementary
application of sound; we continue to use the age-old standard system beep (per-
mitting users to replace it with quacks, toots, sneezes, or other custom varia-
tions). Computer sound channels these days can carry more information. For
example, designers could apply a graduated scale of warnings, from a low-
volume, mid-frequency grunt for progress reports (“Now printing document”;
“Waiting for connection”) to a deep, loud growl for pre-emptive warnings (“Are
you sure you want to format the hard disk?”) and a high-pitched scream for post-
disaster announcements (“Your program just crashed”). A particularly effective
application of sound output would be for anticipated decision announcements
(see Chapter 24).

Music is another way to bring sound to bear on an interaction, but music is
difficult to apply interactively. Music’s power arises from its holistic nature; the
emotional value of a composition does not spring from a simple addition of all
the notes; it is instead the internal relationships reaching over the entire compo-
sition that render music so effective. Break the music into individual phrases,
play them independently of each other, and you get auditory mishmash. Thus,
musical compositions must be presented in their entirety to work their magic—
and how can you interact with something that refuses to alter itself in response
to your actions?

Still, there have been some impressive efforts in this direction, which indi-
cate that much potential for music remains. As early as 1983, a computer game
called Preppies sported sprightly tunes during game play, and the tunes accept-
ably segued at transition points in the game. Similarly, many first-person
shooter games are embellished with musical sequences that can change with
the environment. 

However, in all such cases, the degree of interaction is low; the music
changes only occasionally. We do not enjoy the kind of rapidly changing music
that we hear in movies. Why? Because when composing for a movie, the musi-
cian knows what’s coming next, and can build that knowledge into the flow of
the music. This is much more difficult to do in interactive products, because the
designer cannot know in advance what the user will do, and therefore cannot
program the algorithms for rapid shifts in tone. Fortunately, there has been
much progress of late in algorithmic music generation, and over the next
decade we will hear music with increasingly faster response times.

Speech Synthesis

We have had basic speech synthesis for several decades now. While the early
results sounded mechanically Swedish, they were recognizable as human speech.
We have made much progress since then: we ditched the accent and have added
rudimentary voice tonality. You can have the computer speak with, say, the voice
of a man, a woman, a boy, or a girl. There are even programs that can figure out

6490 AID Chapter 3  10/21/02  3:58 PM  Page 27



28 Chapter 3

the tonal traits of your own voice and mimic them adequately. But the general
solution to tonality—the ability to specify almost any voice—eludes us yet.

Even worse is the problem of inflection. The goal here is to have the com-
puter say “Not with my daughter, you don’t!” with the proper inflection on my
to communicate indignation. Much preliminary work has been done on this
problem; no solution has emerged that is good enough to command wide
adoption.

A more fundamental weakness of speech synthesis is its transitory nature. If
I set my computer to print a document, and then go grab a cup of coffee, the
spoken advisory, “The printer is out of paper,” will go unheard, leaving me igno-
rant and irritated upon my return. For this reason, speech can seldom be used
as a primary mode for speaking to the user. Its use will most likely be confined
to declarations of assumptions and intermediate processes, similar to the man-
ner in which members of a work crew coordinate their actions by announcing
them as they proceed.

N O T E Some pessimists warn that the use of any sound can be disruptive in an office
environment. I think this is true only in the case of ill-mannered sound. Every office
buzzes with quiet conversations between co-workers, and a quiet conversation between
user and computer is no different. The designer should apply sound with the same sense
of civility that guides office conversations. Keep it short, confine attention-getting noises
to serious situations, and don’t raise your voice.

Assembling the Pieces

Putting it all together, we see that we have a machine that can efficiently present
moderately detailed images with lots of color, some animation, small snippets of
prerecorded sound and—soon—synthesized voice output. Interactivity designers
would therefore best utilize this device by using color liberally, resolution next,
animation third, and sound last. (This is not to say that sound deserves little
attention; in annunciation situations (for example, “You’ve got mail!”), use of
sound is the best way to speak to the user, and it’s also the best way to declare
anticipated decisions.)

As technology improves, you’ll have more of everything, and the ratios may
shift. Certainly as screen sizes increase, you’ll be able to spread out your screen
layouts and indulge yourself in some much-needed whitespace. Larger hard
disks will permit greater use of animation. 

A Final Warning

Last, I warn you to be especially wary of a dangerous pitslope in interactive
design: the tendency to speak too much. Several forces push you in this direc-
tion. First, speaking media are well understood, and you probably already pos-
sess expertise in one of these media. 

We always prefer to solve problems with techniques we have already mas-
tered. For example, my wife once started a new job by discovering that her sub-
ordinates were carrying out a manufacturing step by cracking nuts with big

6490 AID Chapter 3  10/21/02  3:58 PM  Page 28



Speaking 29

rocks. She inquired as to the reason for the rocks: safety? efficiency? The work-
ers were surprised by the question and allowed as how they’d never done it any
other way. She asked, had they used hammers; they had, but hammers did too
much damage. Well, she said, have you tried plastic deadblow hammers? Silence.
The new deadblow hammers tripled productivity. Moral: don’t use rocks to
crack interactivity design.

Second, the computer is intrinsically better at speaking than at listening. We
spend more money, memory, and machine cycles on visual display than on any
of our input systems; think about how cheap and simple a mouse is compared to
your 19- inch color monitor. The stores are full of special display cards that will
give you even more graphics power than already comes with your machine, but
have you ever seen a special card to enhance the computer’s listening?

Lastly, our own egos egg us to hog the conversation. In regular conversa-
tion, the disapproving stares of our interlocutors serve to rein in our rampaging
egotistical loquacity; no such helpful feedback constrains us in interactivity
design. So we blather away at our users, hosing them down with impressive
imagery, astounding animation, and sensational sounds. An ego trip, yes; good
interactivity design, no.

As an interactivity designer, you must maintain constant resistance against
these forces. At every step in the design, you must ask yourself, am I talking at
my user or talking with him?

The dimensions of speaking available to the interactivity designer are measured by
resolution, color depth, frame rate, and sound. Of these, only color depth exceeds the
natural limits of the human eye. Resolution falls far short, while frame rate falls
between these extremes. Sound is an underutilized medium of communication to
the user.

6490 AID Chapter 3  10/21/02  3:58 PM  Page 29



6490 AID Chapter 3  10/21/02  3:58 PM  Page 30



4
T H I N K I N G

Thinking is the delivered content of all interactivity
designs. It uses algorithms: mathematical procedures

for determining results, built up from many tiny building
blocks. Algorithms can be created from many sources.

Human Thinking Versus Machine Thinking

While thinking is a handy term for the purposes of this book, it surely misleads
the reader about the realities of designing this second step in interactivity.
Computers don’t think, and they never will; what goes on inside their CPUs is
alien to human thought. I use the anthropomorphic term only because it’s the
closest word available. But remember: the notion of computers thinking is about
as strained as the notion of Mr. Sperm in love with Ms. Egg.

6490 AID Chapter 4  10/21/02  11:39 AM  Page 31



32 Chapter 4

The difference between biological thinking and machine thinking is pro-
found. Nervous systems process through pattern recognition. All considerations
are expressed as patterns; all decisions are manifested as patterns of muscle activ-
ity. These patterns can be temporally sequenced: when we decide to speak the
sentence “The cat threw up a hairball,” the decision is a pattern, but the actual
utterance is delivered serially. Pattern-recognition thinking is ideally suited to the
needs of an organism: it is easily scalable from the simplest wormy thoughts to
the overwrought contemplations of homo sapiens. It yields fast results—always
good for an organism coping with a real-time environment—and its default con-
figuration permits the widest latitude in processing sensory inputs (for example,
“Grunt, that berry is red and round, so it fits the pattern for edible berries. Barf!
Gee, maybe I need to refine my pattern for edible berries.”).

Machine thinking, by contrast, is about as far away from pattern recognition
as a thinking system can be. It reduces all thinking to the most elementary logi-
cal atoms, using bits as data and the three fundamental logical operators (AND,
OR, NOT). All machine thinking is nothing more than combinations and
sequences of these operations. Because these operations are so logically micro-
scopic, huge numbers of them must be assembled to accomplish anything we
humans consider useful. The building blocks of computer logic are assembled
into towering pyramids of logic to create useful functions.

Many non-technical designers are appalled and intimidated by the size of
the intellectual pyramid they must build. Harkening back to their childhood
building-block play, they fear that any pyramid they build will necessarily col-
lapse of its own weight. So they never make the attempt.

You must indulge yourself in some hubris to design interactive applica-
tions. Unlike the wooden blocks of your childhood, the building blocks of com-
puters snap together neatly like Lego pieces. With enough Lego parts, you
could have created edifices reaching up to the stars, but your brother had lost
the crucial pieces. When designing with the computer, your supply of Lego
pieces is infinite.

I’ll demonstrate the process by showing you how I would go about design-
ing a word processor. I’ll use both top-down and bottom-up approaches. Top-down
design starts with the broadest statement of the design objective and then
steadily breaks it apart into smaller and smaller chunks until all the chunks are
small enough that their implementation is obvious. Bottom-up design starts with
the capabilities of the computer and works upward in the general direction of
the objective. The two strategies meet somewhere in the twilight zone of soft-
ware design.

I start at the top by deciding that my goal is a program that will allow the
user to type some text, edit it, save it for later use, and print it. I flit back to the
bottom and note that my fundamental data structure will be the text itself: a
long table of characters, one slot for each letter or punctuation mark that the
user types. Bouncing back to the top, I observe that my program must organize
that text into a page. The table itself is a long line of characters; if I were to
print it directly, I’d get something like a ticker tape of text. So now I must figure
out how to organize all that text into a page.

6490 AID Chapter 4  10/21/02  11:39 AM  Page 32



Thinking 33

A Digression about Verisimilitude

Consider this document:

Why shouldn’t our word processor be able to reproduce this document?
The task in interactivity design is the same as in any art: to create, not an exact
duplicate of reality in all its confusion and messiness, but an image or represen-
tation of reality that focuses the user’s mind on some singular truth. The
designer deliberately distorts reality in a manner reflecting the designer’s own
point of view. Whenever you design an interactive application, you are not deliv-
ering reality to your user, you are imposing a worldview upon your user. That
worldview has purpose or human desire woven into its fabric. The distortion
that your worldview imposes is a falsehood, a failure of verisimilitude—a lie. But
it is a useful lie, a clarifying lie, and therefore valuable to your user.

Consider the Declaration of Independence as printed by a computer:

When in the Course of human Events it becomes necessary for one People to

dissolve the Political Bands which have connected them with another, and to

assume among the Powers of the Earth the separate and equal Station to which the

Laws of Nature and Nature’s God, a decent Respect for the Opinions of Mankind

requires that they should declare the causes which impel them to the Separation.

We hold these Truths to be self-evident, that all Men are created equal, that

they are endowed by their Creator with certain inalienable Rights, that among

these are Life, Liberty, and the Pursuit of Happiness—That to secure these

Rights, Governments are instituted among Men, deriving their just Powers from the

Consent of the Governed, that whenever any form of Government becomes destructive

to these Ends, it is the Right of the People to alter or abolish it.... 

See how dry and lifeless the computer version is! It lacks the tiny skips
where the quill left the paper; in the real document, you can almost hear the
scraping, scribbling sound of quill on paper. Look how stately that title is, with

6490 AID Chapter 4  10/21/02  11:39 AM  Page 33



34 Chapter 4

its beautiful calligraphy and exquisite flourishes, and how utterly the computer
version fails to capture its magnificence. And what about the signatures? What
computer output could ever match the boldness with which John Hancock put
his life on the line?

All these observations are true, but irrelevant. The word processor used in
this example is built on the worldview that a document is composed of its text,
pure and simple. It captures the words and the language perfectly, deliberately
neglecting the sensuousness of the original work. If you want to build a sensu-
ous word processor, by all means do, but if so, you must place sensuousness at
the center of your design, subordinating all other considerations to your design
objective.

End of digression.

Meanwhile, Back at the Ranch . . .

My task here is to reduce the messy complexity of a real document to some sim-
ple construct that I can compute with. I need some simplifying concept that
stands intermediate between a single character and a page. An obvious solution
pops into my head: a line of text. Looking bottom-up, a line is a short string of
characters; looking top-down, a page is a stack of lines.

Now I must translate that insight into computable terms. What data will I
need to completely specify the nature of the line? What numbers must be
computed?

Line length is an obvious beginning. Clearly, the line must fit inside the
margins of the page. This can get tricky, though, because the line length
depends on how many characters are in the line, and I can’t know that until I
actually have the text at hand. Ergo, the computer itself will have to make the
decisions about how to fill lines. I’ll have it build each line the same way a six-
teenth-century typesetter would: start at the beginning of the line and place the
first letter, then the second letter, and so forth, until we get to the end of the
line. If I can’t get the last word to fit into the line, then I have to break up and
hyphenate the word, or move the entire word to the next line, leaving a long
space on the current line. The human typesetter measures the length of the line
simply by fitting it into the typeframe; the computer uses a different method. I
store a table of the widths of every single character in my typefont; then when-
ever the computer adds a letter to the line abuilding, it adds the width of that
character to the summed length abuilding. When the summed length exceeds
the allowed line length, the computer goes back to trim the end of the line. We
can express these plans in the elemental terms of the computer:

1. START A NEW LINE

2. SET THE LINE LENGTH SUM TO ZERO

3. GET THE NEXT LETTER FROM THE TABLE OF TEXT

4. PUT THAT LETTER IT INTO THE LINE ABUILDING

5. LOOK UP THE WIDTH OF THAT LETTER IN THE WIDTH TABLE

6. ADD THAT WIDTH TO THE LINE LENGTH SUM

7. QUESTION: IS THE LINE LENGTH SUM LESS THAN THE PERMITTED LINE LENGTH?

6490 AID Chapter 4  10/21/02  11:39 AM  Page 34



Thinking 35

8. IF THE ANSWER IS YES, THEN DO THIS:

9. GO BACK TO LINE 3 AND WORK FORWARD FROM THERE

10. BUT IF THE ANSWER IS NO, THEN DO THIS INSTEAD:

11. TRIM A WORD OFF OF THE LINE, AND THEN GO TO LINE 7

This little bit of imaginary computer program will perform the thinking
function of deciding how to lay out the text inside each line. It doesn’t do a
great job: there’s only one font and no variations within that font. Nor does it
specify how to “trim the line,” but that’s a job for another little snippet of com-
puter code.

Now comes a big idea: I can give this little snippet a name, say, BUILD A LINE
and then use it as a bigger building block in creating the next layer of the pyra-
mid. At a higher level of the program, there will be line of program code that
says USE "BUILD A LINE" NOW. So we go, building ever-bigger blocks. The elemen-
tary blocks perform truly stupid operations, but we assemble them into larger
blocks that perform merely dumb operations and then assemble those into
larger blocks, continuing until we get some interesting or useful thinking.

Algorithms

This little snippet is not a computer program: it’s an algorithm. A computer pro-
gram is an actual working piece of software that you can run on a computer; an
algorithm is a generalized plan for a piece of software. An algorithm is a blue-
print for a portion of a computer program; it must be translated to a computer
language such as Java before it can be run on a computer.

Who designs algorithms? Heretofore, algorithms were always designed by
the same programmers who wrote the code. Effective interactivity designers
wrest that responsibility from the programmers, or sometimes they become pro-
grammers themselves. Algorithms are the fundamental units of computer think-
ing. To design the thinking, you must design the algorithms. You must therefore
learn the principles demonstrated in the word processing example. You must be
able to construct algorithms using the elementary components of computer pro-
cessing. If you don’t want to design the algorithms, then go draw artwork, or
write a marketing plan, or do something you’re good at. Just don’t botch interac-
tivity design by relegating the thinking part to somebody else. All three parts
(listening, thinking, and speaking) must be an integrated whole.

I can hear you protesting, “But I lack the mathematical expertise to design
algorithms. I’m a designer, not an engineer!” This may be true, but engineers
lack the design expertise to create algorithms. It might take you a while to recall
your high school algebra, but it’ll take a lot longer for an engineer to develop
your artistic sensitivity. Somebody’s got to do the job, and yours is the shortest
path to the goal.

Also: shame on you! Was there ever a great artist who was allowed mere
technical problems to obstruct the path to greatness? Leonardo studied light
and anatomy; Michelangelo learned metallurgy; many modern sculptors are
quite handy with a welding torch. Indeed, most of the advances in metallurgy
before 1800 were made by artists seeking new forms of expression. Technology
serves art—but only for those artists willing to learn the technology.

6490 AID Chapter 4  10/21/02  11:39 AM  Page 35



36 Chapter 4

How to Create Algorithms

Algorithms come from the same depths of the human mind that produce
poems, paintings, and symphonies. Like other works of art, they are metaphori-
cal in some deep sense. The basis of the metaphor, however, lies not in how
things appear or sound, but in how they operate. The crash of cymbals and
blare of trumpets in Siegfried’s Death and Funeral March are blatant metaphors
for the wails at a funeral. More subtlely, the four-part handling of the theme of
the fourth movement of Beethoven’s Ninth Symphony metaphorically evokes an
intricate interplay of sadness, nostalgia, and joy. But an algorithm might
metaphorically treat the dispersion of people from a crowded subway exit as the
paint emerging from a spray nozzle, or a person’s losing his temper as the rup-
ture of a water pipe. 

In the demonstration algorithm presented earlier, I used an explicit
metaphor: the sixteenth-century typesetter. The line of text on the screen is just
like a line of type in a typebox; a character on the screen is just like a single
piece of type. That metaphor enabled us to see exactly how the algorithm would
work. It was the basis of the act of creation.

Most low-level algorithms are as simple as this example, and quite easy to
design. At the higher levels of design, however, the task becomes more difficult,
and the metaphors more subtle. I have used a great many metaphors in my
work, some of them quite exotic. I once used a metaphor involving Mayan arith-
metic to solve a screen display problem. The Mayans had a weird way of calculat-
ing that was, in this case, ideally suited to my problem. Their system never
developed fractions, but they figured out how to get around the problem.
Similarly, 8 -bit computers could not use fractions, so I used the Mayan’s tech-
nique on the computer. 

On another occasion, I wanted an algorithm to calculate the affinities of a
group of imaginary friends inside the computer. If Fredegund likes Mary but
hates Gomer, and Mary likes Gomer, how does that affect Fredegund? This is
tricky business, because each pairing of people must be considered. My
metaphorical solution was to attach imaginary springs to each person, one spring
going to every other person, and then setting the length of the spring to be the
amount of antipathy that they had for each other. Then I used some simple
spring equations from physics to model their behavior and move them around in
a ‘social space’ that was a metaphor for the social universe of the group.

Twenty-five years ago, while I was an undergraduate physics student, I faced
an interesting problem that was, in essence, an algorithmic challenge. I needed
to randomly select one of eight pairs of lights to be illuminated, and I needed to
do this at random times. Nowadays, this problem would be ridiculously simple
to solve with a random-number generator in a computer, but back in 1971 we
didn’t have such technology. I needed to design a random-number generator
that would also randomly select one of eight targets.

I cast about for random processes in the real world; there are precious few
indeed. One is radioactive decay; however, detecting individual decay products
would have required some fairly expensive equipment. I had to do the entire
project on a budget of $270.

6490 AID Chapter 4  10/21/02  11:39 AM  Page 36



Thinking 37

Another random process is the motion of particles in an ideal gas. We nor-
mally think of a gas as a set of molecules in free motion, but there’s no law of
physics that requires an ideal gas to consist of molecules. The particles could
just as well be much larger than molecules and still show the same behavior as
an ideal gas. I reasoned that I could just as correctly use ball bearings.
Moreover, there is nothing in the physics of an ideal gas that requires it to oper-
ate in three dimensions; two dimensions will work just as well. This provided the
basis for my physical algorithm.

I started with a piece of plywood and nailed some 3/8- inch wooden strips
to it in the form of a rectangle with a funnel at the bottom. At the bottom, I
placed a metal propeller attached to a motor. Then I placed some ball bearings
in the chamber, tilted the plywood slightly so that the balls would naturally roll
down towards the propeller, and turned on the motor.

When the propeller hit a ball, it imparted energy to the ball, which then
took off to the upper reaches of the chamber, colliding with other balls. In the
lower half of the chamber, motions were dominated by the action of the pro-
peller, and so it didn’t act like an ideal gas, but in the upper portion of the
chamber, the motions were primarily affected by ball-to-ball collisions, and so
the system acted like an ideal gas.

I made a small exit hole at the top of the chamber, and balls occasionally
(randomly) escaped through the hole. They then rolled down a ramp to enter a
Pascal cascade made of nails, bouncing left or right in three sequences to enter
one of eight channels. In rolling down one of these channels, a ball would pass
over two microswitches of my own design (two strips of copper foil held apart by
a bit of electrical tape at one end), closing the microswitches and activating the
lights. After exiting the switch channels, the balls rolled down another ramp to
return to the lower portion of the ideal gas chamber.

By adjusting the tilt angle of the plywood and the number of balls in the
chamber, I could get any desired rate of activity. My advisor had a good laugh
over my Rube Goldberg setup, but the system worked perfectly during the 12-
hour experimental run.

Algorithms come from your experience and your knowledge; ultimately,
algorithms are wherever you find them. I believe that a broad education is an
important factor in algorithm creativity. If you’re good at spatial thinking, geo-
metric algorithms are always handy. Perhaps you can draw a schematic represen-
tation of the problem, thereby converting difficult concepts into points, lines, or
angles. If you’re designing an entertainment product based on a love triangle,
why not use an actual triangle in your algorithms? 

Some Useful Metaphors for Algorithm Creation

There are as many metaphors to use as there are ideas in your head. Here are
some particularly productive veins of thought to mine for metaphors.

Spatial and Geometric Metaphor

Spatial and geometric relationships are the most heavily used base for
metaphors, largely because programmers excel at spatial reasoning. The trick

6490 AID Chapter 4  10/21/02  11:39 AM  Page 37



38 Chapter 4

here is to identify the most important relationship among the components of
the problem, and treat that relationship as a distance. For example, I once
designed an algorithm for emotional interaction in a group of people by think-
ing in terms of the “emotional distance” between any pair of people. If two peo-
ple liked each other, they were physically close in my imaginary diagram, and if
they hated each other, they were physically distant. In a political simulation, one
might define half a dozen major political issues, and measure each voter by
where she stands along a spectrum of opinions about the issue; combining those
six dimensions geometrically allows you to determine a political “center” against
which candidates can be judged.

Physical Metaphor

Physical metaphors apply processes from physics or chemistry to a problem. In
the emotional distance model I just described, I imagined springs stretched or
compressed along the lines connecting every pair of characters; these repre-
sented the social pressures that pulled people apart or pushed them together.
To see how people’s relationships changed, I simply allowed the whole system of
springs to relax to its most stable positions. The ideal gas law could be applied
in a number of ways to analyze the behavior of users at large websites, the better
to serve their needs.

Musical Metaphor

Although I am impressively ignorant of musical theory, the richness and high
degree of conceptual polish in music tantalizes my hunger for new sources of
algorithmic protein. Specifically, music offers a variety of ways for thinking
about sequences of events. The rules of melodic composition, and the basic plan
of establishing a pattern and then violating it in a pleasing way, offer a great
many opportunities for entertainment software design. Concepts of harmonics
and chord progressions could be applied to algorithms in educational software
to alleviate the tedium of certain kinds of material. 

Business or Economic Metaphor

A variety of concepts from the fields of business and economics offer useful
sources of metaphor. Competition between similar entities can be applied in a
great many conflict simulations, and the relationships among price, supply, and
demand can be applied in almost any resource management simulation, even
when it includes no explicit price mechanism. A great many algorithmic prob-
lems involving prioritizing tasks can also be addressed with metaphorical price
mechanisms. Website traffic analysis can be enhanced with models that com-
pare the “price” of a page (its time to download) with the “demand” for that
page (how often it is accessed). In a more technical application, certain types of
operating system problems involving the management of machine resources
can be addressed with schemes analogous to the “put” and “call” systems of the
stock market. 

6490 AID Chapter 4  10/21/02  11:39 AM  Page 38



Thinking 39

Emotional Metaphor

There’s an interesting irony here. Designing emotional algorithms can be a diffi-
cult task, requiring recourse to other metaphors. However, algorithms based on
metaphors for human emotion can be especially useful in handling certain types
of user interface problems. (More on this in Chapter 9.)

Bureaucratic Metaphor

Bureaucracies exist because certain social tasks are so complicated that they
require a formal division of labor. Software has grown increasingly complex, too,
and managing software complexity is the central thrust of all modern software
development philosophies. However, we have yet to tackle the concomitant
problem of presenting all that complexity to the user in a coherent and usable
form; much software is better organized internally than externally. We all love to
deride the inefficiencies of bureaucracies, but the brutal truth is that, since
Roman times, bureaucracies have proven themselves to be the best way to han-
dle messy problems. So why not organize your design along bureaucratic lines?
More on this in Chapter 9.

Data Structures

Creation of algorithms goes hand in hand with creation of data structures; when
I hit a brick wall trying to come up with an algorithm, I back up and try the dif-
ferent approach of trying to come up with a data structure that covers the prob-
lem. A data structure is simply a reduction of the key elements of the problem
to numerical form. For example, suppose that you are designing an educational
program about history. Reducing historical processes to algorithmic form is a
daunting task, so it might be easier to define the data structures first. A simple
data structure for this job might take the form of a sentence, with a date, sub-
ject, verb, and direct object: 

Year Subject Verb Direct Object

800 Pope crowns Charlemagne

1225 Genghis Khan conquers Persia

1347 Black Death enters Venice

1939 Adolph Hitler starts World War II

The components of this data structure, such as subject, verb, and direct
object, are called fields. Each of these can be represented by numbers represent-
ing entries in a table. A program using this data structure would then have a
long table of historical actors, such as Genghis Khan, Adolf Hitler, Attila the
Hun, and Florence Nightingale. Each table would contain all the necessary addi-
tional data on the actor, such as name, birth and death dates, competencies, and
so forth. Another table would list the verbs and their characteristics. 

6490 AID Chapter 4  10/21/02  11:39 AM  Page 39



40 Chapter 4

Here’s another example. A data structure for a human face might contain
the following fields:

Nose length

Mouth width

Lip thickness

Interocular distance

Height of face

Pointiness of chin

Eye color

Eyebrow thickness

A simple number for a distance in millimeters can be used for most of the
fields in this data structure. Pointiness of chin might require a number for the
angle of the chin. Eye color would require three numbers, one for the red com-
ponent, one for the green component, and one for the blue component.

This set of numbers can then be used as a basis for writing a program to
draw a human face. The program would use these numbers to do its job. You
could feed the program any set of numbers, and it would draw that face. 

Thus, creating a data structure is often a good starting point for creating an
algorithm. Note, however, that data structures seldom encompass the fullness of
the reality. There’s a lot more that goes into making a human face than the
eight numbers offered here. But those eight numbers give us a good start, and
we can always add more numbers to our data structure if we want to beef up the
quality of the overall algorithm.

Ask yourself: What data structures will I need to tackle my problem? How
can I reduce the messy reality with which I must deal to something that can be
expressed numerically? How complete must my data structure be to solve the
design problem adequately? How would various additions to the data structure
enhance my ability to improve the interactivity?

Perhaps you object that reducing people to mathematical ciphers is an out-
rage against your artistic sensitivities. If so, consider that most art in some way
reduces the human soul to some physical object: a painting is just oil on canvas,
a sculpture just metal or rock. The printed page can present Proust or pornog-
raphy. A medium does not affect the human values of art; what matters is the
expression that the medium carries. If you can express some deep truth of the
human soul in algorithmic form, who cares that your truth is communicated via
silicon and plastic?

The Significance of Thinking

Although I have argued that each of the three steps of interactivity (listening,
thinking, and speaking) must be designed well, there is one asymmetric factor to
consider: thinking constitutes the content of your work. Listening and speaking
are crucial enabling steps, but thinking is the goods.

6490 AID Chapter 4  10/21/02  11:39 AM  Page 40



Thinking 41

A spreadsheet, for example, must have a clean display layout and a practical
input system, but ultimately the value of the spreadsheet lies in the calculations
that it performs for the user. If the calculations offered are inadequate to the
user’s needs, then the best-designed listening and speaking are useless. A word
processor must have good user interface, but when the rubber hits the road, it is
the way that the software organizes and reorganizes the words on the paper that
matters most. Game designers have learned that snazzy graphics and sounds are
vital, but without good gameplay, their designs are DOA. 

The web might seem to offer a counterexample; after all, most of the
“thinking” on the web consists of little more than links. These constitute a weak
form of thinking. We must remember, however, that the web is still in its
infancy; we are nowhere near to mastering this medium. Indeed, the salient
trend in the evolution of the web in the last few years has been the augmenta-
tion of its simple hyperlink-based thinking with enhancements using CGI and
Jjava. Moreover, our designs are currently distorted by the ghastly slow speed of
the connections. These slow connections lead us to think in terms of static
pages. We need to shift gears.

Here’s one way to think about it: what if somebody put a word processor on
the web? If you don’t have a word processor of your own, you just go to that
website and type your document. You can edit it, rearrange the margins and the
paragraph settings, and when you like the result, you can print it. This may
strike you as silly—after all, the web is so slow that you’d spend most of your life
waiting for the latest edited version of your document to come down the wire.
But those long delay times are a temporary artifact of telephone lines designed
only for voice transmission. There’s no question that the lines will improve, and
speeds will go way up. What happens when the Internet is so fast that it can
bounce back a page faster than you can type a single character?

Right now, we use the web in hunt-and-peck fashion; our interaction with a
website is thin, distant, muted. Recall my initial observation that conversation is
our clearest metaphor for interactivity. Suppose that all conversations between
humans had always been carried out at web speeds—delays of 3 to 20 seconds
between each sentence. Conversation wouldn’t be much fun or much use, would
it? Suppose one day some savior delivers us from this evil predicament, and sud-
denly we can speak to each other at our current speeds. Consider how pro-
foundly the nature of conversation would change. That change is precisely the
same change that will steal over the web as connections speed up.

Stop thinking about the web as a collection of pages. What you’ve been call-
ing a page is really a window into a niche of thought. Assume that your user will
interact with your website as intimately as he might interact with a word proces-
sor. This implies, of course, that your website will boast software as rich and intri-
cate in its algorithms as a word processor. That’s a lot of work. But it’s the future.

Link-based thinking was appropriate when the web was tiny and pages
were few; it’s not difficult to link up a few dozen pages by hand. But as tech-
nologies grow, methods that worked fine in their youth fall into obsolescence.
The web has enjoyed explosive growth in size, but much slower conceptual
growth. Hand linking thousands of pages doesn’t work, and browsing is inade-
quate when dealing with thousands of pages. Search engines bring a bit more

6490 AID Chapter 4  10/21/02  11:39 AM  Page 41



42 Chapter 4

thinking to the process, and already we find that they can’t keep up. We need
ever-smarter techniques to get what we want from the web. We don’t need bet-
ter graphics or more buttons—we need better thinking. That’s why Java has gen-
erated so much excitement: it brings vastly greater computational (thinking)
power to the web. Over the course of time, cosmetic designers will be shoul-
dered out of the way by those designers who can express their thinking
processes (not merely their thoughts). 

Algorithm creation is the deepest challenge of interactivity design. It
requires profound integration of breadth of knowledge with soaring creativity.
The great designers of the next generation will distinguish themselves with their
brilliant algorithms. 

Closure

At the deepest level, successful interactivity design demands that you offer ideas
to your customers. Furthermore, it is not enough, as it is with other media, to
offer merely a hodgepodge of interesting, useful, or edifying ideas; the designer
must create a closed, complete, and consistent working model of whatever the
product addresses. (More on this in Chapter 7.)

Traditional media are organized differently. In this book, for example, I
include a good many ideas and facts, the range of which covers a great deal of
territory. There’s some linguistics, a touch of anthropology, a little mathematics,
some physics, and a bit of history, among other things. By wandering into other
territories, I add depth to the primary content. But suppose I was saddled with
the Editor From Hell who demands that any topic I touch upon must be com-
pletely covered. After all, it’s a disservice to the reader to supply a partial truth,
and besides, we all know that a partial truth is also, because of its incomplete-
ness, a partial lie. Therefore, any subject I broach must be fully addressed. I
think that you can agree that such a demand would be impossible to satisfy;
nobody can live up to that ideal. So in books (and other media), we accept the
principle that any given expression will be incomplete. Thus, noninteractive
media tend to be scattershot affairs, containing lots of interesting bits and pieces
that spread out over a great range but don’t actually enclose the entire intellec-
tual territory. Shakespeare’s Macbeth says a lot about karma, but it certainly
doesn’t say everything there is to say on the subject.

But the interactive expression must be complete and closed in its coverage;
every failure of closure will inevitably result in problems for the user. A word
processor that can’t handle the letter Z would obviously be a disaster, but even a
lesser shortcoming, such as an inability to handle the ¢ key, will cause serious
problems for some users. 

Here’s an example of why a lack of closure can be disastrous. In the Bad
Old Days, when CPUs were slow and RAM was tight, some word processors
used embedded characters to control document formatting. For example, the
text <##PB##> would cause the program to generate a page break, and the text
<##SK3##> would tell it to skip three lines. These strings of text would be sneak-
ily inserted into the text you typed, but never shown on the screen or in the
printout. The only problem was, if a user just happened to type one of those

6490 AID Chapter 4  10/21/02  11:39 AM  Page 42



Thinking 43

magic text formulas into her document, say, <##SK999##>, all hell would break
loose. The designers told themselves that this would never happen, and perhaps
it never did happen, but if some hapless user just happened to type the wrong
text, can you imagine the disaster that would unfold? The fundamental source
of this disaster is the failure to close the set of text strings that can be used by
the word processor. 

Have you ever noticed that some web pages crash your browser? It’s often
traceable to a closure problem. The browser receives the various commands it
needs to build the page, and it receives a command in a context that wasn’t
anticipated. The command is misinterpreted, and the browser bites the dust.
Every single byte that comes down the wire into the browser must be recogniza-
ble by that browser. Getting it 99.99 percent right isn’t good enough when a
user can suck in 9,999 bytes in less than a second.

The only solution to the problem of closure is to accept a smaller, more
compact handling of the material. The user must be able to wander freely with-
out falling off the edges or bashing into walls. In attempting to interactivize
Macbeth, you will be forced to say everything there is to say on your subject, and
you’d better keep the subject small enough to permit you to do so.

This also places sterner demands on your creativity. It must be bolstered
with a heightened sense of artistic integrity. A non- interactive expression can
play fast and loose with dramatic reality, asking the audience to suspend disbe-
lief and go along with the dramatic bandwagon; the artist’s primary task is to
build enough momentum into the storyline that the audience is swept right past
the unavoidable inconsistencies. How many movies have you picked apart for
their absurdities? I refer not only to the silly action movies that perpetrate
drama molestation; even the more serious cinematic dramas demand leaps of
faith from their audiences. In Apocalypse Now, why does Marlon Brando’s charac-
ter acquiesce to his own murder? Why did he grant Charlie Sheen’s character
freedom to roam the encampment? Why didn’t he simply kill his prisoner—he
certainly had no compunction about brutally killing hundreds of other people.
His actions heighten the mythical feeling of the movie, but would you have done
that? Have you never wondered what would have happened had Brando’s char-
acter acted differently?

Francis Ford Coppola undoubtedly created a masterpiece, but he couldn’t
have done it without distorting reality. An interactive artist must also distort real-
ity, but with less freedom to do so blatantly. The interactive expression must
address all reasonably conceivable variations, and that, in turn, requires the
artist to consider the issues at hand with more thoroughness and more integrity.
Of course, since the world is so big, the only way to achieve that degree of
integrity is to narrow the scope of the expression.

Thus, interactive expressions must be deep rather than broad.
Completeness implies depth, while closure implies narrowness. Think of it in
terms of planes and spheres. A noninteractive expression is like a splash of paint
on a plane, spreading out over a particular area, with bits and pieces nearby.
The user is always aware of the edges of those painted areas. An interactive
expression, though, is like a sphere covered with paint. The user can wander all

6490 AID Chapter 4  10/21/02  11:39 AM  Page 43



44 Chapter 4

over the sphere, never encountering an edge. Your job as an interactive designer
is to take that flat splash of paint and wrap it neatly around a sphere.

Algorithms are the creative substance of computing. While their expression inside a
computer is necessarily mathematical, their raw material comes from all walks of life.
Designing the data structure is often the first step in designing the algorithm. In
designing an interactive product, the designer must create a closed and complete set of
algorithms.

6490 AID Chapter 4  10/21/02  11:39 AM  Page 44



5
L I S T E N I N G

Listening is the most difficult step in interactivity design.
Computer hardware is not well-suited for listening. The

designer must invent the language the user listens with. 

Ah, the impossible art of listening! The pride of individualism that
makes us Westerners so enterprising, so curious, and so indefatigable in pursuit
of our personal goals also makes us lousy listeners. We love to talk and have
developed a vast treasury of wisdom in the art of speaking well, but as listeners
we are failures. “Man can neither make him to whom he speaks, hear what he
says, or believe what he hears” (Thomas Fuller, 1647).

Nor can we write this off as due to the ephemeral quality of the spoken
word. Get on the Internet and lurk in one of the discussion groups. It need not
be an inflammatory topic—almost any topic with lively discussion will demon-
strate clearly that the correspondents don’t pay attention to what is written.
What fraction of the messages are devoted to clarifying simple misunderstand-
ings? “I didn’t mean it that way” and “I thought you meant something else” are
surely the two most common noncommercial messages traversing the Internet.

Our culturally congenital inability to listen is our greatest hindrance in
learning interactivity design. As I have already pointed out, effective interactivity
requires effective speaking, effective thinking, and effective listening, and a fail-
ure in one area destroys the interactivity regardless of how magnificently exe-
cuted the others might be. Listening to the user, therefore, is just as important
to the final result as thinking and speaking.

6490 AID Chapter 5  10/21/02  12:30 PM  Page 45



46 Chapter 5

Natural Languages

Human languages provide a misleading example for the interactivity designer,
because they are imposed from above. I can communicate to you in this English
language only because English is standardized (mostly). We agree on the mean-
ings of most of the words and the interpretation of most of the grammar. This
agreement was enforced by our teachers, who crammed “correct English” down
our throats. The words that I speak with are the same words that you speak
with—our communication is symmetric.

Whatever we speak falls short of our meaning. Someday I hope to speak or
write the perfect sentence: an utterance of such clarity, precision, and power
that it communicates my meaning with absolute perfection. I doubt that I shall
ever succeed, but it’s a fine goal. Sometimes my words fall so far short of my
meaning that my interlocutor requests me to run that by him one more time.
Thus, everything I say is more or less misleading or false. I will never utter a per-
fect truth.

Second, my channel of communication is inevitably noisy. In vocal commu-
nication, the delicate nuance of voice intonation is drowned out by the sounds
of blaring televisions, screeching brakes, or the jackdaw prattle of my neighbors.
My hearer can never enjoy the full benefit of those delicate intonations. If I
appear on television, my face cannot be seen with the clarity that it would be in
a face-to-face encounter; hence, micro-expressions and subtle lifts of the eye-
brow are lost. If I write a book, I abandon all hope of incorporating nuance into
my words and must rely on dead letters on a printed page.

Third, my interlocutor never understands my meaning in the same way I
meant it. Even if I eschew obscure terminology, you will still interpret my words
in a slightly different manner than I mean with them. My arrogant is probably
less vainglorious than yours—I always connect it semantically with arrogate. Even
my facial expressions and voice intonations won’t communicate exactly the
meaning that I have in mind. My expression and intonation for “sardonic clever-
ness” strikes some people as “conspiratorial.”

A Visual Metaphor

Here’s an illuminating way to think about word meanings and the process of
communication: Let’s imagine words as if they were like fragments of the keys
we use in our locks. The particular shape of the teeth constitutes the meaning of
the word. Thus, my word cat might look like this:

Now when you hear me say the word cat, you conjure up a meaning for it in
your mind, which presumably is a perfect fit for my word cat:

6490 AID Chapter 5  10/21/02  12:30 PM  Page 46



Listening 47

Sad to say, it never works out this well. The truth is, your interpretation of
the word cat is slightly different than mine; after all, your knowledge and experi-
ence of cats is unique. Thus, the fit between my word cat and your word cat is
imperfect:

Thus far, all we have is a graphical means of imagining the previously men-
tioned fact that we never understand each other perfectly. But now let’s examine
some variations on this theme. Consider, for example, how this scheme applies
to bland words such as thing:

The teeth in this word are fewer and flatter than those of a more specific
word such as cat, so my version of thing makes a better fit with your version, even
though the two meanings are still different. Taken to the other extreme, when I
use the word dactylodeiktous, whose meaning you don’t know, we get a fit like this:

my cat

preferred your cat

my cat

actual your cat

my thing

actual your thing

my dactylodeiktous

your dactylodeiktous
unknown

6490 AID Chapter 5  10/21/02  12:30 PM  Page 47



48 Chapter 5

This demonstrates why, when I use words with big nasty teeth, they simply
break against your lack of definition. Of course, if you happen to share my pen-
chant for ridulously obscure words, and therefore know exactly what dacty-
lodeiktous means, then the picture looks like this:

Oh, what a rapturous fit! What ecstasies of semantic intimacy!
Now, let’s extend the concept from individual words to entire sentences:

This is how the words look when they are lined up individually, but when we
assemble them into a sentence, they are required to fit each other laterally as well:

This additional requirement drives the meanings further apart, because
there are now more teeth to fit together in a more complicated pattern. Your
individual word hairballs matches mine best when you shift the meaning slightly
to the right, which is no problem when we consider the word in isolation. But
when coupled with the verb throw up, the meanings clash in opposite directions.
Moving your throw up to the right to keep in step with your hairballs causes your
throw up to clash against the teeth of my throw up, forcing your sentence away
from my sentence.

The longer the expression, the more teeth there are to mismatch. Imagine
what happens when we try to fit together a bookful of words—it’s a wonder if
you understand even half of all the ideas I write!

my dactylodeiktous

your dactylodeiktous

Cats

Cats throw up hairballs

throw up hairballs

6490 AID Chapter 5  10/21/02  12:31 PM  Page 48



Listening 49

Herein lies the fundamental failure of all noninteractive communication:
adding more precision of expression (more, longer, and sharper teeth) makes
matters worse if your audience’s context differs from your own. Greater preci-
sion helps only to the extent that the audience’s context matches yours.

Interactivity’s advantage is that it invites resolution of the subtle contextual
differences that can ruin a noninteractive communication. A great many success-
ful conversations concentrate on resolving such contextual differences. The
speaker’s original point is not challenged; rather, the context in which it is cor-
rect is exposed by a series of probing questions. 

In the visual metaphor we’ve been discussing, interactivity encourages jig-
gling the teeth around to get a better fit. If my cat is a fluffy, cute, lovable
friend, and your cat is a hissing, scratching sneak, my statement that “I found a
lost cat today” means to you something entirely different than I meant. But if
the statement is made as part of an interactive conversation rather than a nonin-
teractive book, you will note the apparent contradiction between my statement
and the smile on my face and converse with me about cats, thereby discovering
the difference between us and resolving the contradiction. Interactive communi-
cation helps us resolve subsurface clashing contexts.

Conversations with Computers

For good or ill, the relationship between user and computer is neither standard-
ized nor imposed by a third party, nor is it symmetric. People and computers do
not use a common language in speaking with each other. The computer speaks
with video and audio, but the human speaks with keyboard and mouse. The pre-
cise meaning of the keystrokes and mouse clicks is the creation of the designer.
We designers listen to the user speak in a language that we ourselves create.
Who then controls the utterance: the user who speaks the words or the designer
who creates and defines them?

If you would listen well, then you must give your user the language to speak well. 

Imagine yourself in a nightmare in which the people around you are doing
something terrible, yet when you open your mouth to object, nothing comes out
but muffled croaks. You gesticulate frantically, grunting, and they merely shake
their heads and smile at your inarticulateness. This nightmare lurks only in our
sleep and our software. How many times have you felt the same frustration with
the computer? You shout at it, point to the screen, stab the keyboard with your
fingers, and you know perfectly well that the computer sees you as a grunting,
inarticulate deaf-mute. You know what you want, but can’t find the words to say
it to the computer. Are we therefore to conclude that you are a blithering idiot
who couldn’t talk your way through an open door? Of course not! The failure
arises not from your lack of communications skills, but rather from the deficien-
cies of the language offered by the designer. 

6490 AID Chapter 5  10/21/02  12:31 PM  Page 49



50 Chapter 5

Don’t think that this problem is confined to beginners. Just the other day I
wanted to retrieve some email with my browser rather than my usual email pro-
gram. When I asked the browser to get my email, it curtly informed me that I
had not yet provided my identification information. So I went to the appropri-
ate spot in the browser and found that my identification information was
already there. But when I tried again, the browser insisted that it lacked the
information it needed. I have yet to figure out how to tell that damn browser
who I am.

Anatomy of a Computer’s Ear

In designing a language for our user, we must first assess the parts at our dis-
posal. Just as the human vocal tract determines the content of human languages,
so too do the input devices on the computer determine the content of the lan-
guage you create for your users.

Before we begin, however, I’d like to present a simple table of the critical
technologies in each of the three steps of interaction:

Step 1980 2000 Improvement
Technology Technology Factor

Speaking 24v x 80h B&W 800h x 600v x 24-bit display 1000x
character display 44 KHz stereo sound

Thinking 1 MHz, 8-bit CPU 300 MHz 32-bit CPU 4,000,000x
16K RAM 64 MB RAM

Listening Keyboard Keyboard + Mouse 2x

As you can see, all the glorious advances in technology over the past 20
years have bypassed the listening side of our task. This suggests that some
minor improvements in listening hardware will work major advances in overall
interactivity.

Keep this in mind as we consider various listening technologies.

Single Button (Yes or No)

Many years ago, I had a dinner conversation with one of the early exponents of
interactive television. This fellow regaled me with his clever schemes for studio
design, camera mobility, and all manner of other snazzy ideas. My ignorance of
television production left me no choice but to nod, smile, and keep my mouth
full of food. After he’d run out of steam and finally started working on his now-
cold meal, I asked one of the few intelligent questions available to me: “And how
does the audience communicate its input to the show?”

Perhaps the salmon had captured his attention; with an airy wave of his
fork, he told me that the home audience would be provided with a button to
push at appropriate times. “A button?” I asked, gauchely failing to conceal my
incredulity. “With a button you can only say two things: yes or no.” He was
unruffled. “Sure! It’ll keep ‘em happy!”

6490 AID Chapter 5  10/21/02  12:31 PM  Page 50



Listening 51

Now, let me take you back for a moment to the 1960s and the premier
broadcast of a bold television show: Star Trek. In that first broadcast episode,
Captain Christopher Pike has been horribly injured by some space-type acci-
dent; he is confined to a high-tech futuristic wheelchair that looks like a card-
board box from which his head protrudes. His body is so completely destroyed
that he cannot speak, and his face is unanimated with any flicker of emotion; he
just sits there like a bust on a box. What an artistic challenge for the actor!
Fortunately, he is not completely without means of self-expression; the ever-
ready prosthetic engineers of the twenty-fourth century have equipped him with
a little light that he can blink, perhaps by twitching his kidneys. One blink signi-
fies yes, and two blinks mean no.

Shed a tear for the tragic condition to which this once-mighty starship cap-
tain has been reduced. Unable to speak, to smile, or to laugh, this poor wretch
stares helplessly across a huge chasm at the rest of humanity. His family and
friends will never know his thoughts, hear his needs, or share his feelings. He
can never initiate any conversation or volunteer any thought; he can only react
to other people with his pathetic two-word vocabulary. Consider the horror of
this man’s position! Imagine the loneliness of such a life, the emptiness of such
an existence! I would surely call this a living hell. And this was the role that my
interactive TV friend intended for his audience.

Lose the pushbuttons.

Joysticks

Let us now move up the scale to an input device no longer in common use
(except in video games): the joystick. The standard switched joystick allowed but
five syllables: up, down, left, right, and button. These syllables could be com-
bined into exactly 18 words, such as up-left-button, down-left, or button. (The eigh-
teenth word is silence). 

Consider how little you could say if you were confined to an 18-word vocab-
ulary. While it beats all heck out of yes or no, this vocabulary is not the fodder
for profound self-expression. It’s adequate for moving around a two-dimensional
space and performing a single action, such as firing a weapon, but not much
else. Isn’t it a remarkable coincidence that this was precisely what all the early
videogames offered?

A simple principle emerges from these examples: the input device deter-
mines the size of the vocabulary available to the user. Clearly, we want to use
input devices that give our user maximal vocabulary.

Keyboards

Let us move on to the keyboard. Now here’s an input device you can say some-
thing with! Its 101 keys standard, plus a variety of prefix keys (Shift, Control,
Option, and so on), give this baby a vocabulary of upwards of 400 words. 

But there’s a catch. The keyboard is the perfect input device for entering
text; it’s a disaster for anything else. The keys are labeled with the various text

6490 AID Chapter 5  10/21/02  12:31 PM  Page 51



52 Chapter 5

characters, which is good if you’re typing text, but if you’re trying to do anything
else, those labels are misleading or confusing. The keyboard can even be diffi-
cult to use with text characters, if they aren’t mapped clearly; try finding the key
for the £ character, if you have one.

There have been attempts to use a keyboard for input functions other than
text entry. The most striking of these are some of the flight simulators, which
use the keys to handle the myriad complex functions of an airplane. Thus, the g
key might activate the landing gear, the f key might operate the flaps, and the q
key might increase the resolution of the ILS system. Note that we can’t always
obtain good mnemonics when we use a keyboard. I take a dim view of such
input systems. Memorizing all those keys is just too difficult for most people,
especially because there are no cues to aid memory other than the occasional
fortuitous use of the first character—which is violated just often enough to gen-
erate intense confusion at times.

Reliance on the keyboard for nontextual input lies behind one of the stupid-
est and most avoidable blunders in classic user interface design: darkness paralysis.
Imagine it’s four in the morning and the dog is whining in the garage. You stum-
ble out of bed and creep through the house, groping your way toward the door.
You’re too sleepy to remember to turn on the light. The path you must take is
direct and unobstructed, yet you move slowly and carefully, imagining at every
moment a toe-stubbing chair or nose-crunching wall to be just in front of you.
The absence of light dramatically changes a simple and obvious task into one that
is difficult, confusing, and intimidating. Always keep this feeling in your mind,
for although users operate the same program that designers create, the designers
see the program in the light of complete knowledge, and the users navigate in
total darkness. The designer cannot understand the user’s confusion; having laid
out the room, examined it from a thousand different angles, gone over every
square inch with a magnifying glass, the designer can walk across it with his eyes
closed. He simply cannot understand the user’s confusion.

I hold in special contempt those designers who dismiss users’ fears with
RTFM (Read The Manual); I’d love to lock them in a dark room at four in the
morning with a 400-page manual explaining how to turn on the lights.

Those 101 keys that give us so much expressive power as designers consti-
tute terrifying responsibility in the eyes of the user. At every juncture of uncer-
tainty, the user attempts to second-guess your intentions. It’s reasonable for the
user to assume that you as designer have competently addressed every problem.
This suggests that every single key should perform some function. The thought
that you would leave some keys unused never occurs to the user; after all, you
are the omniscient designer, addressing every contingency, anticipating every
need, using every resource—and assigning a meaning to every key. Yet upon first
encountering a program, the user cannot possibly memorize all those program
functions; therefore, she balks at doing anything, certain that there’s something
out there just waiting to stub a toe.

Many computer keyboards in the 70s and 80s were meant for use on com-
puter terminals; one of the most important functions in those days was inter-
rupting the computer to order it to terminate some mistaken instruction gone
wild. Back then, this key was placed in the upper-left corner of the keyboard

6490 AID Chapter 5  10/21/02  12:31 PM  Page 52



Listening 53

and was labeled ABT, meaning “Abort current job,” but when that verb became
politically charged, keyboard manufacturers with nightmares of newspaper head-
lines about “computerized abortions” changed the label to BRK, meaning
“Break off executing current job.” These same keyboards were used in manufac-
turing the early personal computers. Many were the first-time users whose faces
blanched upon discovering this key. Clearly, it said “break,” but what, precisely,
would be broken by pressing it? The computer? The disk drive? The world?

Nowadays that key is labeled ESC, for “escape,” a much happier term.
Unfortunately, esc in Latin is the verb root for eat; fortunately, ancient Romans
don’t use computers.

We therefore come to a clean conclusion: the keyboard should be used for
all textual input, and nothing but textual input. There is a single exception to
this rule: the provision of shortcut keys for power users. Those users who have
mastered an application resent the often-slower input systems that sustained
them when they were beginners. For such users, it is appropriate to provide key-
board shortcuts for common verbs, and you have no responsibility to organize
those keyboard shortcuts in any logical system. Power users seem to revel in
arcana; indulge them. Just make sure that the beginning users are unaware of
the existence of this mess.

The Mouse

At long last we come to the most common and most important input device in
personal computing: the mouse. Many are the variations on the basic theme of
mousousity. There are one-button mice, two-button mice, three-button mice, and
on upwards; I don’t know what the world record is, but I have suggested that the
ultimate in mouse design could be achieved by attaching rollers to the bottom of a
keyboard, thereby unleashing the limitless power of the 101-button mouse.

A related device, the trackball, is really just a dead mouse. The latest ver-
sions, called trackpads, are dead, roadkilled mice. Then there are the optical
mice, which have been emasculated.

These devices all function in the same way: user prestidigitation moves a cur-
sor on the screen to a hotspot where further prestidigitation performs some action.

The Mouse Is Itself an Interaction
My theoretician’s hormones gush when I contemplate the significance of the
mouse. It is a second-generation input device; previously, input devices were
boxes at the end of a wire that transmitted some defined signal to the computer
when activated. The mouse, by itself, has no defined meaning; its input depends
completely on the context of the screen. The concept of the mouse includes
more than just the plastic doodad we roll around our desks; it necessarily
includes the cursor on the screen. We demonstrate our appreciation of this con-
cept whenever we refer to the cursor as the mouse.

Yet “mouse” comprises even more than roller plus image: there’s also the
software inside the computer that moves the image in response to the motions
of the roller. We have to include the CPU in the definition, too, because it’s
what actually executes the mouse software. 

6490 AID Chapter 5  10/21/02  12:31 PM  Page 53



54 Chapter 5

Here’s where we get weird: the mouse is an input device for interaction, but
it is itself a complete interactive process. You speak by moving the mouse; the
computer listens to your motion, thinks about it, and speaks back by moving the
cursor. You listen by watching the cursor move on the screen, think by compar-
ing its position with your objective, and speak again by moving the mouse some
more. Thus, the mouse as an input device is an interaction within an interaction. 

The deep power of this interaction can easily be demonstrated by resorting
to a practical joke masquerading as an experiment. We could write software to
discombobulate the normal relationship between mouse motion and cursor
motion. We could then load this software into our friend’s PC and hide so we
can watch the fun. He moves the mouse up, and the cursor moves left.
Confused, he moves the mouse down, and the cursor moves up. Befuddled, he
stops altogether, and cursor slowly creeps downward.

The interactive factor endows the mouse with a gigantic advantage over all
other input devices: the ability to match vocabulary size to function count on
the fly. With a mouse, you can offer your user a single button to push, thereby
focusing his attention narrowly (for example, “System crash; press here to
restart”). If the situation calls for two buttons, you can offer exactly two buttons,
no more, no less (for example, “Format disk” and “Cancel”). You can provide
exactly the number of buttons required by the context; you thereby banish dark-
ness paralysis completely, as there need never be any nonfunctional buttons.
The upper limit on the number of buttons is the number of pixels on the
screen, usually several hundred thousand. Don’t dismiss this as an absurdity;
paint programs and photo-retouching programs treat every pixel in the image as
a mouse-addressable button.

Variable Vocabulary Size
These are just the static capabilities of the mouse; dynamically, it’s even more
expressive. These are the words you can say with a mouse:

Move over an object

Pause over an object

Click an object

Click and hold on an object

Double-click an object

Triple-click an object

Click and drag an object

Prefix key click

This is merely what is possible with a single-button mouse. With a two-
button mouse, we can separately invoke each of these gestures save the first two.

6490 AID Chapter 5  10/21/02  12:31 PM  Page 54



Listening 55

More buttons would let us perform even more tasks, but we must acknowledge
human motor limitations. It’s theoretically possible to have a five-button mouse,
with one button for each finger, and make use of sequenced gestures (two or
more buttons held down at the same time), in which case we could have 265 dif-
ferent words to say—but we’d have to remember that pinkie-ring-thumb-middle-
index means “perform a Gaussian transformation” while “pinkie-ring-thumb-
index-middle means “copy this formula down through the spreadsheet.”
Anybody up for learning the pental numbering system?

How Many Buttons?
Macintosh mice have one button, and Windows mice have two or three and
sometimes a little scrollwheel between the two. What’s the ideal number of
mouse buttons? This has been the subject of fierce opinion wars. I believe that
the original single-button mouse of the Macintosh was ideal for the first ten
years of GUIs, but the increasing vocabulary requirements of software demands
more of our input devices, and the use of more buttons on the mouse is undeni-
ably superior to the use of double-prefix key commands (for example, Shift-
Control-K) now starting to creep into software.

I suspect that the practical upper limit is the two-button mouse with a
scrollwheel, the Windows standard as I write this. More buttons will be too com-
plicated to be practical. My own mouse has five buttons, each with separately
assignable meanings for different applications, but I have found all that expres-
sive power to be, well, overpowering. Ninety percent of my clicks go to the main
button, 9.9% to the second button, and about 0.1% go to the third button. The
two-button-plus-scrollwheel device will likely become the standard. 

Unfortunately, Microsoft’s laissez-faire definition of the functions of the two
mouse buttons has led to more confusion than freedom. The two mouse but-
tons should perform completely different classes of tasks. I suggest that the left
button should be used for actions and the right button for inquiries. This would
guarantee that there is no overlap between the two buttons. The Microsoft
mouse in its current incarnation roughly follows this guideline but includes
enough exceptions to make matters completely confusing. In earlier days, soft-
ware was simple enough that there wasn’t a great need for inquiries, but nowa-
days our software is so complicated that there is always a question to ask as we
use it. Apple’s excellent balloon help system would function better if it were
actuated by a right-button click rather than a modality.

Hotspots

First comes the problem of indicating the presence of active portions of the
screen. We have quite a hodgepodge here. There are some clearly defined stan-
dards: we all know what pushbuttons, radio buttons, check boxes, and scrollbars
look like, even though we can’t agree on their nomenclature—what Mac people
call a scrollbar, Windows people call an elevator. Other active elements are mod-
erately well standardized, such as butcons (icons that operate as buttons) and
hyperlinks. But there is also a cackling flock of odd-bird screen objects,

6490 AID Chapter 5  10/21/02  12:31 PM  Page 55



56 Chapter 5

demonstrating the triumph of graphic design over interactivity design. The typi-
cal application screen jabbers at the user with cute little icons and graphic indi-
cators. For example, can you tell what each of the following mini- icons does:

Each one of these chirpers actually does something. They’re easier to pick
out in their spatial context—but then, context is recognizable only to someone
with experience. Our first task, then, is to make those active objects recognizable
as active objects; our second task is to communicate their function. Few design-
ers appreciate the importance of the first task. A good example here is the third
mini- icon from the left, which is used to split a window into two panes, so that
the user might compare two distant parts of the document. While it is widely
used, only the most computercentric person would believe that the majority of
users are aware of this tiny image. I am not arguing against the use of this mini-
icon; I am arguing only that relying on its natural visual recognizability just
doesn’t work. Designers need a more effective way to tell the user that it does
something.

My personal horror story about this problem involves the fourth mini- icon
from the left. It nestles along the bottom edge of the program window, next to
another mini- icon in which the black triangles are larger. Could you guess that
those black triangles represent mountains? Clicking the larger mountains zooms
in on the main image, making it appear larger. Clicking the smaller mountains
zooms out from the main image. Of course, I had no way of knowing this with-
out reading the (…) manual, so I searched in vain in the menu structure for a
way to zoom in or out, to no avail. One day it occurred to me that those two
mini- icons might be active. I clicked one and instantly realized their function. If
only the designers had made it obvious that those mini- icons were functional!

I opine that the best way to flag an image’s ability to provide a function is to
include a standard color, the hotcolor, somewhere in the image. If every active
element on the screen contains the hotcolor, either on its border or in its text
or its imagery, and no inactive element contains the hotcolor, then the user has
a simple and reliable visual indicator of active elements. 

An oft-used alternative is the auto-highlighting object. This is an image that
becomes highlighted when the cursor passes over it. I think that this is a lousy
way to solve the problem: it reduces the desperate user to randomly sweeping
the cursor over every possible image on the screen, hoping to find something
that will light up.

Another bright idea, the tooltip, not only reveals functionality, but also
explains that functionality. If the cursor pauses over an active item for longer
than, say, one second, a tiny text box of an indicative color pops up, providing
the user with a short phrase explaining the function of the active element. The
tooltip is basically an auto-highlighting object with an added benefit and its con-
comitant cost. The benefit is that the function is explained; the cost is that a
delay is imposed on the user. 

6490 AID Chapter 5  10/21/02  12:31 PM  Page 56



Listening 57

All too frequently, the tip, a single word or short phrase, is only
somewhat less cryptic than the graphic icon. For example, the little beasty 
in a word processing program (you’ll never guess which) doesn’t mean much to
the inexperienced eye. Holding the cursor over it yields the unilluminating
phrase “document map.” If you already know what a document map is, then you
don’t need the tooltip. If you don’t know what a document map is, the tooltip
phrase doesn’t help. Only after I actually clicked the mini- icon did I discover that
it produces a list of the first significant words of each paragraph.

The killer objection to tooltips, however, is that they rely on a delay
imposed on the user. Delays are inimical to interactivity, as I explain in Chapter
8. Any design element that deliberately imposes a delay on the user is bad for
interactivity and bad for the user.

Moreover, tooltips are unnecessary; the balloon help system devised by
Apple some years ago is superior. First, it is readily available on request and
stays out of the way if not wanted. Second, it provides complete explanations. It
still requires, however, the minesweeping methods required by auto-highlighting
and tooltips. Apple’s balloon help, augmented with my hotcolor system, and
accessible directly through a second mouse button, would be a better solution.

A third approach to the problem of identifying active screen elements, spo-
radically used, changes the cursor when it passes over the object. For example,
the default north-northwest (NNW) arrow cursor changes into an I-beam cursor
when it enters an editable text field; this clearly indicates that pressing the mouse
button will place the blinking text cursor directly underneath the mouse cursor.
Presently, cursor manipulation is a hodge-podge. Some of this is unavoidable. For
example, many image editing programs use special cursors to indicate the nature
of the tool being applied to the image. Aside from these, however, the great
majority of programs use only 10 to 20 cursors, of which only a few standards are
recognized, most of which were defined by Apple as early as 1983:

Standard north-northwest cursor

Rectangle-selection or pixel-targeting cursor

Text insertion cursor

Watch cursor for indicating delays

Animated spinner cursor for indicating delays

Single-click activator cursor

Grabber cursor for moving objects

Unfortunately, cursor alteration can suffer from two problems. First,

6490 AID Chapter 5  10/21/02  12:31 PM  Page 57



58 Chapter 5

program:
Can you guess what they all mean?
The second problem with multiple- identity cursors is that some programs

are a bit slow to change them. You can therefore end up staring at some non-
sensical and confusing combination of cursor and background. This problem is
readily solved with more careful programming. Right now, too many sloppily
written programs are on the market.

I believe that a clean system for organizing the user’s expressive possibilities
can be built with cursors. There are only eight classes of active elements on
the screen:

1. Something that executes an action when single-clicked, such as buttons,
scrollbars, check boxes, and hyperlinks

2. Something that executes an action when double-clicked, such as controls for
files and applications

3. Something that can be selected for a subsequent operation by a single-click

4. An object that can be moved to another location

5. An object that can be moved vertically only

6. An object that can be moved horizontally only

7. Menu

8. Editable text field, such as a word processor document, file name field, or
spreadsheet cell

(A ninth class applies to pixels whose value can be changed, as in a painting
document, in which case the cursor must indicate the tool employed.)

there can be so many different cursors that the user cannot fathom their
multitudinous meanings. Consider this collection of cursors used by a single

6490 AID Chapter 5  10/21/02  12:31 PM  Page 58



Listening 59

I assign cursors to the eight classes as follows:

Class Passing over Image Holding or Dragging

Single-clicker

Double-clicker

Selectable

Draggable

Horizontally draggable

Vertically draggable

Menu

Editable text field

Incactive area

These cursors can be graphically combined to denote objects with multiple
capabilities:

File (moveable, selectable, and openable)

Selectable and openable

Selectable and moveable

In all these cases, the right button could be used to bring up balloon help,
thus eliminating the need to set a help mode by recourse to the Help menu.

One rather silly reason why such a system has yet to be implemented is that
cursors have traditionally been restricted to 16 pixels in height and width. This
made sense in the bad old days of tiny black-and-white displays, but the vastly
greater screen real estate available these days makes 32-by-32-pixel cursors more
than feasible. This limitation will require some fundamental changes to operat-
ing system software to overcome, but the technical problems are headaches, not
many-fanged monsters.

Voice Input

Another much-discussed input device is the microphone feeding into voice
recognition software. This technology is just now coming into its own; the worst
obstacles have finally been overcome, and we are now able to explore (with
some restrictions) the possibilities of this technology. I have high hopes for voice
recognition; it is far and away the most natural form of input. 

6490 AID Chapter 5  10/21/02  12:31 PM  Page 59



60 Chapter 5

We must be careful, however, to differentiate between two entirely separate
issues: voice recognition and language recognition. The former refers to recog-
nizing individual words or short phrases; the latter brings syntax into the picture
because we combine those words into a larger communication. Our ability to
process language falls short of our ability to process voice. The computer can
recognize individual words well enough, but the goal of understanding a sen-
tence is still far beyond its reach. 

Current language recognition software is good enough to handle simple
sentence structures with no use of metaphor, but not much more. For this rea-
son, many observers reject all forms of voice input for the computer. This, I
think, is throwing out the baby with the bathwater. Voice recognition software
can be put to immediate use as a second channel of user input, thereby speed-
ing up the interaction. Commands can be single words used in conjunction with
the keyboard and mouse. Thus, a graphic artist drawing a picture would not
have to bounce the cursor between the image and the tool palette; the mouse
could remain in position, and the various tools could be called up with voice
input. Similarly, a writer on a word processor might not need to remove her
hands from the keyboard to handle the various nontextual commands; voice
commands could parallel many of the mouse commands.

It is true, as some people object, that voice input suffers from problems of
background noise, but I think people will adjust just as they have learned to keep
their voices down when somebody in the next cubicle is on the telephone. Voice
input will elevate the office loudmouth to a higher plane of obnoxiousness.

The problems of language understanding, and some possible solutions, are
presented in Chapter 22.

Other Input Devices

The lack of viable alternatives to the standard keyboard-plus-mouse is certainly
not due to any lack of imagination on the part of hardware engineers; a great
variety of alternatives has been proposed. Sadly, the community and the indus-
try have not greeted these innovations with the same exuberance that they
accorded video boards, MIDI boards, and other speaking devices.

One of the more interesting devices I have seen is the force-feedback
mouse, a mouse operating on a special pad that, under control of software, can
push the mouse in various directions. Thus, the user can feel the frictional
resistance of dragging an object across the screen, or feel a slight edge when
crossing a window boundary. This kind of tactile feedback enhances the notion
of the mouse as a nested interaction and extends the utility of the mouse. 

Sad to say, I am dubious that this innovation will catch on; most people
won’t be willing to pay the extra dollars to gain the extra expressiveness. The
irony lies in the amount of money that people are willing to pay for speaking
hardware: the audio-video capabilities of most personal computers typically
account for about 25 percent of the total cost of the computer. You would think
that, after spending hundreds of dollars on audio and video, people would be
willing to spend a bit of money on better listening capabilities. Oh well.

6490 AID Chapter 5  10/21/02  12:31 PM  Page 60



Listening 61

A wilder idea was tried at Atari in the early 1980s: a brainwave input device.
A band wrapped around the user’s head picked up the faint EEG signals ema-
nating from the brain; this would permit the user to control a videogame with
his thoughts! Biofeedback meets Atari! The idea sounded great, but there was a
hitch: the faint electrical signals from the brain are much weaker than the elec-
trical signals emanating from the muscles of the forehead. Therefore, most users
found it quicker and easier to control the device by scrunching the muscles of
their head. After a long or intense session with a videogame, the user invariably
developed a monstrous headache. So much for that idea.

Light Pens and Other Devices

Light pens and similar devices promised so much 20 years ago and yet languish
in obscurity today. The user simply points to a spot on the screen and clicks.
There’s no need to maneuver a mouse at your side; what you point to is what
you get. The killer problem has been the vertical monitor screen; it’s tough to
control a light pen on a vertical surface. Some people argue that, once we go to
flat-panel displays, we can mount our displays horizontally, and light pens will
render the mouse extinct. They fail to consider the positioning of screen and
keyboard. Since the keyboard must sit over your lap, the screen must go, at best,
somewhere beyond the keyboard. I can reach only a few inches farther than the
top of my keyboard; using a light pen would require me to bend forward in a
spinally incorrect posture. For the foreseeable future, you can afford to ignore
light pens.

Another fascinating possibility is the touch-sensitive screen. You poke the
button on the screen to talk to the computer. These are already in use in many
businesses, especially restaurants. They suffer somewhat from the fatness of our
fingers; we can’t use tiny buttons. But as computer monitors grow larger, we can
afford more pixels for our applications, and the Fat Finger problem sheds some
weight. Certainly most websites could be used almost as well with touch-sensitive
screens. Touching the screen causes the cursor to jump to the point of contact
and simulate a button press. Unfortunately, the touch-sensitive screen does not
offer a perfectly smooth upgrade path from a mouse. Double-clicking is slower
with touch, and dragging is much more difficult. Moreover, touch-sensitive
designs must deal with the spotty nature of cursor movement, arising from the
user’s lifting his finger to move more quickly to other screen locations.

There is no single best input device; future improvements in computer listen-
ing will involve the combination of several input devices. This will surely prove
difficult; look how much trouble we have had coordinating the mouse with the
keyboard. There are still plenty of people who consider the mouse a childish
crutch for those who aren’t man enough to handle a keyboard. Such attitudes are
ignorant nonsense, for they fail to appreciate a fundamental truth of expression:
pointing is a fast form of specifying. We have an entire class of words—
pronouns—whose sole job is to semantically point at something. In many, many
situations, pointing is the fastest means of specifying something. Spelling it out is

6490 AID Chapter 5  10/21/02  12:31 PM  Page 61



62 Chapter 5

always clumsier, but sometimes we have no alternative. Thus, the mouse and the
keyboard complement each other neatly. The mouse points, and the keyboard
provides detailed specification. Good design uses the mouse for pointing tasks,
and the keyboard for textual tasks; the difficulty comes in tasks such as menu
selection that can be treated as either pointing or textual; this is why many
menus are accessed through the mouse but provide command-key equivalents.

Combining input devices will be politically difficult because it requires coordi-
nation across a huge industry. If somebody comes up with a better software input
scheme such as the icon bar—it’s a simple matter for others to copy the idea. But
introducing a third hardware input device raises a great many new problems. Why
should a software designer limit her market by taking advantage of a device that
falls short of universal adoption? Why should a hardware manufacturer trying to
beat the competition on price bundle such a device into the package?

Language Design

These then are the basic tools to work with, the elements out of which you as an
interactivity designer can fashion your language of interaction. How do you
design such a language?

Verb Specification

The first rule of all interactivity design is to start with the verbs (see Chapter 8).
What do you want your user to be able to accomplish with your program?
Imagine yourself acting (through your software) as the user’s servant. What
skills do you have to offer, and how might your user most easily take command
of those skills?

Suppose that you are designing some sort of productivity application.
Exactly what do you want your user to be able to do better and faster? Do not
indulge in vague generalities about improving the lives of your users or empow-
ering them; write down exactly what tasks you will help them perform. Now
imagine yourself as the computer-servant eager to perform those tasks. What
must your user tell you for you to be able to do your stuff? What’s the easiest
and quickest way for the user to get her requirements across to you? What
actions (verbs) most directly express the user’s goals?

Or suppose that you are designing a retail website. You might think that
your first and most important verb is buy, but that’s the most important verb for
you, not the user. The user’s desired verb set is more complicated. He wants to
quickly find exactly what he’s looking for, evaluate its appropriateness to his
needs, discover all the gotchas such as shipping charges and delivery times, and
determine how competitive the price is. Your user will likely want to compare
your offering with others on the web. You want to facilitate this process in a way
that most flatters your product. These questions characterize the verbs that you
must offer your customer.

If you are developing an educational program, what is the likely mindset of
your user? What does she already know, and what do you desire to teach? Do

6490 AID Chapter 5  10/21/02  12:31 PM  Page 62



Listening 63

not look at it from your point of view as the teacher; look at it from the stu-
dent’s point of view. Specifically, don’t just organize lots of information into tidy
little structures that make perfect sense to somebody who already understands
everything. Try to imagine yourself ignorant; what questions would you ask? By
what circuitous routes might your curiousity lead you to the information?
Remember that you can’t teach anybody anything; you can only facilitate a per-
son’s own learning process. What actions, then, would a curious student need to
take to learn the material?

Concise verb design is especially important in games, which require fast
learning curves. The user of a word processor need not master style sheets to
begin using the software, but the user of a game needs to know immediately
how to fire the gun in order to stay alive. This mandates a small verb set; the
game designer’s task is then to come up with the most powerful small set of
verbs possible. The best game designers adjust the design to permit that ideal
set of verbs; this most often requires a higher level of abstraction in the verbs.
For example, “pull the trigger” can be abstracted to “fire the weapon” to obtain
greater expressive breadth—that is, to give the player access to more weapons. It
can be further abstracted to “use the device,” thereby granting the user access
to a large array of tools and devices. The trick that makes this work is the cre-
ation of tools that have only one possible use. A tool with two distinct uses could
not be used in such a design. “Do it” is an even more abstract form of the com-
mand; it requires that the verb in question be set up previously by grabbing the
device or otherwise unambiguously specifying the “it” to be done.

Once you have prepared your list of ideal verbs, you face the hardest task of
all: expressing those verbs in a form achievable with computer input devices. If
the user’s verbs are textual, then your decision is a no-brainer: you use the key-
board. Otherwise, you’ll want to start with the mouse as your prime candidate. 

Menus

Three primary constructs dominate all mouse-based interactivity design: menus,
maps, and gizmos. The former are obvious but take a number of forms. Drop-
down menus are the most common form; their worst deficiency is their require-
ment to present the verb in a word or short phrase that fits into a menu;
sometimes a simple concept refuses to yield any short descriptive verbal expression.

Menus are nevertheless a powerful component of the designer’s toolbox,
because they neatly solve a difficult dilemma. On the one hand, we want to pres-
ent our user with a complete list of the available commands to ward off dark-
ness paralysis. On the other hand, screen space is a precious resource in our
designs; we dare not waste kilopixels listing rarely used options. The menu uses
lots of pixels to present options, but only when the user asks to see the options.
From a designer’s point of view, the menu provides more pixels, at the cost of
some indirection imposed on the user, who must access the menu to see those
extra pixels.

Three extensions to the basic menu design make drop-down menus espe-
cially versatile. First is the now-standard ellipsis to denote the existence of a fol-
low-up dialog box. This is used when the menu item triggers a multi-argument
verb. Those multiple values are presented in the dialog box and made available
for editing.

6490 AID Chapter 5  10/21/02  12:31 PM  Page 63



64 Chapter 5

For example, this dialog box allows the user to specify seven values: the des-
tination, the printer, the format of the output, the number of copies to print,
whether they should be collated, which pages to print, and which paper source
to use while printing.

A second extension to menus is the nested or hierarchical menu: a menu
inside the parent menu. The most common example of the nested menu is the
Style menu on the menu bar of many textual applications; inside this Style menu
will be a Font menu item; selecting the Font menu item raises a pop-up menu
listing all available fonts. Menus can be nested many layers deep, but deeply
nested menus are unstable; slight mouse-handling errors can cause the entire
menu structure to collapse. This problem was particularly severe before pull-
down menus were replaced by drop-down menus. (Pull-down menus require the
user to hold the button down while accessing the menu; drop-down menus
require a single click to open and a second click to dismiss.) Nested menus are
most practical for input structures shaped like broadly and deeply branched
trees; the user navigates down the tree to the final choice.

The last extension to the basic menu concept is disabling a menu item by
dimming it. Users now recognize this as a standard indication that contextual
requirements for the use of the verb must be satisfied before it is enabled.
Ofttimes those unsatisfied contextual requirements are obvious, but there are
plenty of situations in which the user might not be able to guess the reason for
the dimming of the item. The user wants to send the mail, and right there in
front of him is a menu item reading “Send my mail,” but it’s dimmed, and the
user can’t figure out what he has to do to get it undimmed. This is a user inter-
face disaster, and it arises in almost every program I have used. My disgust for
this problem is heightened by the ease with which it can be eliminated. There
are two good solutions to this problem.

Instead of dimming an item to disable it, reword the item by prepending the
word “Can’t” and enclosing the resulting phrase in parentheses. Present the item
text in italic style to further differentiate it from available items. Then attach a few
lines of code to the beginning of the menu-handling code, asking if the selected
item is written in italic; if so, display an “I can’t handle that” (see Chapter 8) dialog
box explaining what the user must do to enable the menu item. 

6490 AID Chapter 5  10/21/02  12:31 PM  Page 64



Listening 65

The other solution is even better: Apple’s balloon help system, which can
automatically explain why a menu item is dimmed.

Pop-up menus (appearing when the user clicks an item in the main window
area) are another useful form of the basic menu idea. They are used to present
a default value that can readily be changed by the user. They are especially
handy in designs that are tight on screen space.

Another variation on the basic menu concept is the icon menu, often called
a palette. I seldom use these devices; their weaknesses outweigh their utility. In
the first place, icons are not, pixel for pixel, superior to text in their expressive-
ness. A small number of icons in an application can serve you well, but the
scores of icons swarming over palettes in some applications are confusing. The
one undeniably effective use of a palette is in presenting a selection of back-
ground patterns or colors for a paint program or any other directly visual (as
opposed to indirectly iconic) use. Icon bars are a more refined version of the
icon palette and can work well if they are confined to a small number of icons.

A second deficiency of menus arises when the height of the menu exceeds
the available screen height. The common fix, a scrolling menu, contradicts the
whole point of the menu, which is to present the user with all available options;
it is an abomination. Let us consider the two most common appearances of
overly long scrolling menus: font menus and country menus. 

Font menus show all the fonts available in, say, a word processor. If the user
stuffs her machine full of fonts, how can the designer avoid a long list? The
basic answer is to use hierarchical menus, and I can offer you not one but two
organizing principles. You might organize the fonts by their type: sans-serif,
serif, ornamental, all caps, and so forth. This would require you to obtain this
information about the font, which might not be technically possible, but you
could simply maintain an internal table of all known fonts and refer to that
table; any font not appearing on your table goes into the Miscellaneous sub-
menu. Another organizing principle is frequency of use. The main menu has
four menu items: Frequently Used, Occasionally Used, Rarely Used, and Never
Used. An even nicer approach, if screen space allows, is to present the fre-
quently used fonts on the main menu and relegate all other fonts to submenus.

The same organizing principle could be used to shorten those ghastly long
menus on websites that want your address. It is silly that millions of people must
scroll past countries they’ve never heard of to get all the way down to “United
States.” It would be much better to put a few heavily used country names at the
top of the list and then the remaining countries under a divider.

Maps

Another broad construct for mouse input is the map, which makes each pixel in
an area of the screen a hotspot. The simplest example of this is a painting pro-
gram with a single-pixel pencil tool. If you click a pixel, it changes color. Each
pixel on the screen stands for one pixel in the paint image. You can also act on
groups of pixels with some of the tools, such as a paintbrush, a paint bucket, or
the various geometric shape tools.

6490 AID Chapter 5  10/21/02  12:31 PM  Page 65



66 Chapter 5

Mapping techniques are most useful in situations that assume some sort of
two-dimensional spatial structure: painting programs, drawing programs, CAD
programs, photo-retouching programs, and map-reading programs.

Mapping constructs also offer great utility in some situations requiring com-
plex or finely shaded input structures. With a map, every pixel in the active area
is a button; in extreme cases, this can amount to several hundred thousand but-
tons. Add to that the natural spatial logic built into mapping constructs, and you
have a powerful way to reach into your user’s mind. The trick lies in recasting
your input problem in spatial terms; this requires great cleverness. 

The most familiar application of mapping is the placement of file icons in a
file manager (Finder on the Macintosh, Explorer in Windows). Such systems
map onto screen space all the components of the user’s computer system: pri-
marily the files on the hard disk, but also ancillary devices such as CD-ROMs,
printers, trash bins, and so forth. A window here is nothing more than a scheme
for mapping the contents of a directory onto a chunk of screen space. All the
associated behaviors of windows (opening and closing, collapsing, resizing and
repositioning, overlapping in “two-and-a-half dimensions”) serve only to make
the task of accessing files easier.

By the way, the value of GUIs demonstrates a principle that underlies much
of the development of interactivity design: as computer systems grow bigger and
more complex, completely new methods of interacting with them are necessary.
The simple command-line operating systems of yesterday (and Linux today) are
not universally inferior to GUIs—in fact, they are better at handling small sys-
tems. After all, if you’re working with only a dozen files on a floppy disk, a sim-
ple list of the filenames is all you need. When the typical number of files
increased to a few score, however, we moved from flat systems, in which all the
files on a diskette are listed at once, to hierarchical systems, in which files are
grouped into directories that the user can open and close at will. But a typical
general-purpose computer system these days has thousands of files; even a hier-
archical list of directories is cumbersome. Windowing systems are better because
they allow us to organize the file hierarchy more easily. Of course, the evolution
of file systems was actually more of a co-evolution; the software became more
powerful only as the hardware became more powerful. Trying to run Mac OS 9
on an Apple II with 64K of RAM and a 1 MHz 8-bit CPU simply would not
work. The simpler microcomputers couldn’t handle the more complex filing sys-
tems of today. The old command-line systems were about all that would work in
such a constrained environment.

The recent surge in popularity of Linux is often misinterpreted as support
for all manner of reactionary conclusions. Unix-based systems have two advan-
tages over GUIs: they’re great for programmers to mess with, and they handle
single-task functions, such as file servers, with great reliability. For most of the
tasks that we expect of computers, Linux doesn’t offer a complete or integrated
feature set.

The mapping system of the desktop generated intense excitement during
the 1980s, and there were many attempts to extend the spatial mapping system
in other directions. There were quite a few schemes for expanding the “virtual

6490 AID Chapter 5  10/21/02  12:31 PM  Page 66



Listening 67

desktop” to a “virtual office” complete with virtual filing cabinets, virtual tele-
phones, and so forth. But the metaphor had already been stretched to its limits;
these products never caught on. I suspect that the vast amounts of energy
expended in all these efforts has sufficed to expose all viable extensions within
our reach. For the next few years, mapping systems will probably yield few new
results in interactivity design. Of course, when our machines are a hundred
times bigger and a hundred times faster, and have a hundred times as many
files, it’ll be a whole new ball game.

Gizmos

The term gizmo covers all those odd screen doodads that you use to make things
happen. They are higher-level schemes for enhancing the expressiveness of the
mouse. You already know them, although you may not use the same terms I use.
There are buttons: click them and they do something. Check boxes require a
click to toggle (reverse from off to on, or vice versa). Radio buttons allow you to
select one and only one option from among a group of options. Scrollbars allow
you to set some continuously variable setting, such as the portion of the docu-
ment that your word processor presents on the screen. These four classes of giz-
mos allow the user to say almost anything that can be said with mouse and
monitor; each tackles a distinct and clearly defined expressive problem. I con-
sider the application of these gizmos to be obvious, but if you have any ques-
tions about their proper use, by all means consult Alan Cooper’s excellent book
About Face, which devotes entire chapters to each of these gizmos.

Complex Mouse Expressions

There remains an odd class of expressions available to the designer: the com-
plex expressions that combine a number of motions. One such approach much
toyed with is gestural input, in which the mouse’s motion as well as its position
are taken into consideration. A good example of gestural input is in a game,
Eric’s Ultimate Solitaire. The user can click a card to pick it up and then flick
the mouse a short distance in the direction of the intended destination of the
card; the software will take over and float the card to its destination. This trick
works because there are many constraints on where cards can go, and it’s nor-
mally easy for the software to figure out the intended destination even though
the user’s gestural movement might be vague. Gestural input has poor resolu-
tion; you’ll be lucky to get 45 degrees of angular resolution. Moreover, it seldom
offers truly unique input expressiveness; any gesture toward some on-screen
object must always be replaceable by explicit traversal to that on-screen object.
Gestural input with the mouse, then, provides some reduction of effort for the
user, but little more.

However, some other input devices can benefit from gestural input. The
mouse is handicapped by weak directional calibration; what with the bends in
the shoulder, elbow, and wrist, the user can never be quite sure of the direction
of motion until she sees the cursor motion on the screen—too late with gestural
input. Trackpads, on the other hand, are directionally calibrated; the user’s
body geometry facing the screen and finger positions give plenty of cues as to
the true direction of an anticipated gesture. Touch screens are even better with

6490 AID Chapter 5  10/21/02  12:31 PM  Page 67



68 Chapter 5

gestural input. Accordingly, designs for mouse use should probably avoid ges-
tural schemes, but designs that can be confined to trackpads or touch screens
might take advantage of this capability. 

Even more complex is the extended gesture, or path tracing system. An
excellent case study is provided by the Apple Newton and the Palm Pilot. The
Newton used path tracing to allow normal handwritten input on its touch
screen; this required considerable intelligence on the part of the Newton to rec-
ognize hand-drawn characters. Sad to say, handwriting recognition (more prop-
erly, hand printing recognition) lay within the reach of the Apple engineers but
not within their grasp; the Newton never did attain sufficient recognition accu-
racy for most people.

The designers of the Pilot, by contrast, made a bold compromise: they
imposed an artificial alphabet called Graffiti on the user. This simplified version
of the conventional alphabet was optimized for ease of entry but posed some
minor problems of recognition on the user. The result was fast, clean, and inex-
pensive. The Apple designers had their hearts in the right place, but they
attempted more than they could deliver. The Newton boasts better technology,
but the Pilot has better design.

Extending Sequentiality

When you have a limited number of basic atoms of expression, such as we have
with the computer, the best way to extend their expressiveness is to combine
those atoms into sequences. We combine 26 letters into several hundred thou-
sand words and then combine those words into an uncountable number of sen-
tences. These linguistic models of input are addressed in Chapter 22.

The computer’s ears are small and weak, so you must exert special effort to listen
well. You must design a complete language with which the user can speak to your
design. For the computer to listen well, you must give the user a language that
permits him to speak well.

6490 AID Chapter 5  10/21/02  12:31 PM  Page 68



6
T H E  I N T E R A C T I V E  L O O P

Interactivity moves information in a loop between the
two actors. Better information flow through the loop

usually indicates better interaction.

My definition of interactivity calls it a “cyclic process in which each actor
alternately listens, thinks, and speaks.” Now that we have closely examined listen-
ing, thinking, and speaking, we can step back and look at the “cyclic process.” 

What exactly is the stuff that’s cycling through the interactive loop? My
answer is perhaps overly academic: information. It may strike you as cold-
blooded to describe a conversation as a loop through which information flows,
but I do not ask you to accept this description as comprising the totality of con-
versation; I ask only that you play this academic game along with me so that we
might arrive at some useful understanding of the process of interactivity.

I therefore ask you to think of a conversation as a loop through which infor-
mation flows, changing its content and character with each pass through the
loop. Imagine the intense brainstorming conversations you have had with a
close colleague, a comrade in thought, who can finish your sentences for you.
An idea floats murkily between the two of you; your first attempt to describe it
fails badly. Your comrade stands on the shoulders of your attempt and takes her
own stab at it; again, she fails to capture its essence, but her contribution shows
you the idea from a different angle, suggesting a new approach. Together, the
two of you build on each other’s thinking, passing the idea back and forth

6490 AID Chapter 6  10/18/02  4:26 PM  Page 69



70 Chapter 6

between you as you each chisel away some portion of the matrix of confusion in
which it is embedded. The information content of your interactive loop
increases with each cycle, until after much effort you have exposed the idea with
complete clarity. This is the most compelling example of what I mean by infor-
mation flowing through a loop.

Of course, this isn’t a typical conversation; most conversations are more
mundane:
“How was work, honey?”
“Lousy. The boss yelled at me again for being too slow.” 
“That’s a shame, honey. What would you like for dinner?” 
“How about spaghetti?”
“Did you stop by the store and pick up some milk like I asked?”
“Oh damn! Sorry, I had so many other things on my mind.…”

While this conversation may not match the intensity of the intellectual
bolero described above, it’s still an information loop, albeit an asymmetric one.
The husband cyclically requests information that the wife provides. That such
loops can be lopsided does not deny their underlying architecture; they’re still
information loops, just lopsided ones.

Indeed, the symmetry of information contribution to the conversation is
one of our unstated criteria for successful conversation. My impressively aca-
demic phrase “symmetry of information contribution” is expressed just as
clearly (albeit reversed) in the phrase “hogging the conversation.” A good con-
versation is a balanced cycle to which each speaker contributes an equal share. I
am only rewording a truth you already understand, but this rewording sheds
light on the interactive process.

The concept of symmetry of information contribution can be applied by the
interactivity designer. We can use this concept to evaluate design concepts. For
example, the dark shadow of suspicion immediately falls on those “reference
CDs” that put encyclopedic information at your fingertips. These are worthy
applications, to be sure, but we all know that they haven’t set the world on fire.
People buy computers to get on the Internet, or to process words, or to crunch
budget numbers; they don’t buy computers to accelerate the process of flipping
through an encyclopedia. If you’ve ever wondered why software encyclopedias
haven’t added much more than a few shingles to Bill Gates’ metropohouse, you
now have your answer: software reference works offer lopsided interactivity.
That’s nowhere near as much fun as, say, fiddling around with the latest budget
numbers on your spreadsheet, or adding just the right turn of phrase to your
letter to your father- in-law, or blasting monsters in a dungeon.

Of course, sucking in information without gurgitating any in return is a com-
mon and necessary part of our lives, so interactivity designers should certainly
investigate better methods of doing so. The trick is to keep in mind the impor-
tance of symmetry of information flow through the interactive loop. Most design-
ers who have a large mass of information to make available start on the wrong
foot by focusing on the information itself: how can it be organized, categorized,
and hyperlinked? The better way to start is by focusing on the user: what ques-
tions will prompt the user to approach this mass of information? How can it be

6490 AID Chapter 6  10/18/02  4:26 PM  Page 70



The Interactive Loop 71

arranged so as to most conveniently answer those questions? Four methods are
available to the designer: keyword search, database query, browsing by structure,
and convergent iteration. I shall explore these in the context of the most com-
mon problem of mass information handling: search engines on the web.

Searching by Keywords

Keyword searches are most often used at the beginning of a search. First you
cast your net with a keyword search; then you scan through the results looking
for a likely page. Going to that page, you begin browsing from there. The prob-
lem here is twofold: search engines have different algorithms for collecting the
background data, and you often get far more matches than you can scan.
Keyword searching is not good enough for most people, but we hobble along
with it as the best we have.

Let’s follow an example of a web search problem. Suppose that you’re an
engineer wishing to find out how to use the latest generation of charge-coupled
devices (CCDs). You’ve just been told that these third-generation devices are
exquisitely sensitive, and you’d like to learn about their sensitivities. So you start
with the keyword CCD. Bad move: you just got 15,238,916 matching pages. You
forgot about all those retail sites selling CCD cameras. Okay, so you narrow the
search with CCD AND sensitivity. This is much better: you’ve eliminated 99.9 per-
cent of the matches. Unfortunately, this leaves you with 15,237 matches. You scan
through the match list looking for the pages that are cluttering you up. There are
still plenty of retail sites; you jump to one and realize that the sales blurb boasts
about the sensitivity of the camera. Damn! So you make it CCD AND sensitivity
AND third generation. This drops you down to just eight sites, but you quickly dis-
cover that all of them are retail sites trying to sell you expensive scientific equip-
ment using third-generation CCD technology. You give up at this point.

Browsing by Hyperlink

The web brought this approach to the fore, although it was in use much earlier.
This method is simple, direct, easily adapted to almost any system, infinitely
extensible, and all sorts of other great things—that’s why it’s so popular. There’s
one little catch: all those links have to be set up by hand. Sure, there are plenty
of mechanized links on the web, but those tend to take all the fun out of brows-
ing. Generally speaking, you browse through hand-crafted links; you search
through manufactured links. And with the explosion of web pages, browsing is
less practical until you get very close to your destination.

Returning to our example search for CCD specifications, perhaps you could
get closer to your goal if you found your way to a site that might be close and
then browsed from there. So you search for CCD AND specifications AND techni-
cal and get a healthy 350 sites. Sampling a few, you browse, looking for anything
that might get you closer. Lo and behold, you’ve struck it rich: here’s a page that
lists hundreds of pages of specifications of all sorts of CCDs. Unfortunately, it’s
not sorted by generation, so you have to plow through the whole list to find the
few that you want. There’s gotta be a better way.

6490 AID Chapter 6  10/18/02  4:26 PM  Page 71



72 Chapter 6

Database Querying

Sometimes it is possible to search using numerical tests. The keyword search
considers only text; a database query system allows you to constrain your search
by some numerical trait. For example, bibliofind.com, a purveyor of used books,
allows you to specify the maximum price in any search; only the books that cost
less than your maximum will be presented. Full-scale database query systems
permit all kinds of complicated specifications (for example, “Computer, show
me all available women under 35 whose height in centimeters divided by weight
in kilograms exceeds 3.2 inches). These systems give you a better handle on the
search problem. In the CCD example, you could narrow the search even further
by looking for any CCD with sensitivity less than 0.01 lux. That would get you to
your goal. Unfortunately, database queries work best in numerically organized
problems. If you want to know why the sky is blue, a database query won’t help.

Convergent Iteration

There’s a fourth method, though, that I think would be faster than any of the
preceding ones, although it would take much more work on the part of the
designer. The key observation here is that each of the search systems is designed
to be a single-shot proposition: you enter your search specification or click a link
and off you go to one or more answers. The search specification for such a
jump must be onerously precise. Why couldn’t the process be designed to be
interactive, with an expectation that multiple steps are required to reach the
goal? In practice, all searches are multi-step processes, with the user honing the
search procedure based on results of previous searches. Why couldn’t we build
this concept into our search engines?

As it happens, the concept is already in operation at NorthernLight.com. Its
search engine is even smarter than the one in my description. When I tried my
CCD example on NorthernLight.com, I first used the simple keyword CCD. This
yielded 417,779 hits organized into a dozen categories, one of which was
Telescopes. This led me to 9,174 items with another dozen subcategories. I
chose the Questions and Answers subcategory, which led me to 72 items, many
of which looked just right for my needs.

This system is superior to conventional search engines because it is more
interactive. Rather than ask the user to divine the ideal set of keywords, this
scheme permits the user to enter one broad keyword, which the system uses to
look up a huge set of possibilities. At this point, the scheme does two things that
conventional keyword searches don’t do: it thinks, and it speaks back to the user.
Specifically, it analyzes the set of web pages that fit the initial keyword and fig-
ures out the secondary keywords that most efficiently divide up those web pages
into neat subcategories. It then tells these secondary keywords to the user, who
can then select the most likely keyword for additional searching. 

Technical people might object that this scheme requires too many cycles
and too much background storage. But who’s supposed to do all the work here:
computers or people?

6490 AID Chapter 6  10/18/02  4:26 PM  Page 72



The Interactive Loop 73

Measuring Information Flow

As with many other areas of interactivity design, games best demonstrate the
importance of information flow. Of course, the information flowing through
the loop of a videogame is simple: where you are, what’s coming at you, and so
forth. Nevertheless, videogames derive much of their power from the amount of
information racing through their loops. We can actually measure the informa-
tion flowing in a videogame by asking two questions: how much information on
the screen is changing, and how much information is the player transmitting to
the computer? In a standard 3D shoot-‘em-up game, the screen image is con-
stantly in motion; the amount of visual information transmitted through the
screen is at least 10 MB per second. By contrast, my word processor presents me
with a fairly static image that changes only by small increments as I type; it’s giv-
ing me perhaps a few kilobytes per second. Looking at the input side, though,
the information flow is lopsided the opposite way. A kid frantically punching at
his joypad at, say, two moves a second transmits about one byte every second. I
can readily type four to six bytes per second. Even so, note the extreme disparity
between how much information the computer transmits and how much informa-
tion the human transmits. Let’s face it: fingers were never designed to move
information at high bit rates.

But raw information flow, measured in bits, is not a reasonable assessment
of the value of the information flow through the loop. I could write a program
that would dump the contents of the New York City telephone directory onto
your screen in 4.73 seconds, but that doesn’t mean that this program is some-
how better than my word processor. We must take into consideration the value
of each of those bits of information moving around—an entirely subjective deci-
sion. The pearls of wisdom flowing through my fingertips into the keyboard as I
sit here writing this book—who is to say that they are more valuable bits than
the jerky movement orders coming out of a kid’s video-game joypad?

There is another means of assigning relative values to the bits that flow
through the loop of any human-to-computer interaction: how much processing
does the information trigger inside the human brain? If computer thinking is
the delivered value of a piece of software, is not the human thinking that this
stimulates a measure of the received value of the software? This point of view
remains subjective, of course. A kid playing a video game might evaluate the
oncoming monsters and decide to duck around a corner; how does this decision
making compare to my mulling over the structure of this sentence as I use this
word processor?

While these considerations of information flow are unquantifiable, they do
provide the designer with important gauges of utility. Over and over again, you
as designer must reflect on the state of the user’s mind and what information
processing is going on inside that brain that pays your salary. How can you keep
that brain going at full speed? What information will stimulate it to its highest
levels of desirable activity?

6490 AID Chapter 6  10/18/02  4:26 PM  Page 73



74 Chapter 6

Human-Human Interaction versus Human-Computer Interaction

Some people think that the human-to-human interaction of a conversation is
somehow fundamentally different from the human-to-machine interaction in
software. There are differences, but they are confined to the particulars of each
step. Humans think holistically whereas computers think sequentially. Humans
speak in natural language, whereas computers speak with audio and video.
Humans listen with their ears, whereas computers listen with the mouse and the
keyboard. These are profound differences, to be sure, and much of the hard
work of interactivity design lies in surmounting the obstacles imposed by these
differences. The process as a whole, however, remains the same in both cases.
Human-human interactivity is at root the same thing as human-machine interac-
tivity; the basic cycle of listen-think-speak remains unchanged. The asymmetry of
listening and speaking styles makes your job difficult; the asymmetry of thinking
processes provides you with the point and purpose of your work in the first
place. If the computer thought just like a human being, who’d want to talk to it
rather than the real thing?

Interactivity establishes a loop through which information flows. More information
flow usually means better interactivity. However, the value of the information flowing
is crucial to the quality of the interactivity.

6490 AID Chapter 6  10/18/02  4:26 PM  Page 74



7
A R C H I T E C T U R E S

Architectural diagrams of interaction help us better
understand the design problems we face. A variety of

commonly used strategies are available, but most suffer
from some serious defect. A bushy tree is required for good

interactivity. One way to judge the interactive quality of a design
is to examine the ratio of accessible states to conceivable states.

One of my physics professors used to say, “When in doubt, draw a picture.”
Any tough problem can be clarified by some sort of diagram laying out the ele-
ments of the problem and their relationships. For many people, myself
included, drawing a picture serves the same purpose that vocalizing a feeling has
for many people when they’re upset: it may not by itself solve the problem, but
it’s a good start.

Interactivity design presents us with many tricky problems, and it can be
especially difficult to articulate those problems because of the dynamic nature
of interactivity. Accordingly, drawing a picture might have some value, not as an
engineering diagram or a blueprint, but rather as a way to visualize the prob-
lem. I hijacked a standard diagramming scheme from computer science and
modified it slightly to apply to problems of interactivity. It’s ridiculously simple,
but that simplicity makes it applicable to a wide variety of design problems. In
this chapter, I’ll present the diagram and show how it illustrates many of the

6490 AID Chapter 7  10/18/02  4:27 PM  Page 75



76 Chapter 7

problems and mistakes of interactivity design. Although I’ll be using games and
interactive storytelling as my primary examples, the principles apply to any kind
of interactive application, as I shall later illustrate. Moreover, the design prob-
lems show up most clearly in games.

A Simple Interactivity Diagram

I shall begin with a simple diagram that presents the structure of a story:

In this diagram, each circle represents an event or action, while the arrows
show the connections between the events. A story is thus a simple sequence of
events:

A. Once upon a time there was a noble youth named Culhych.

B. His stepmother told him that he must win a beautiful girl named Olwen.

C. But to do this he had to gain the help of a great king. 

D. So Culhych set out for Arthur’s court. . . .

Note that the sequence of events is linear; that’s why we refer to this struc-
ture as a storyline.

Now, how can we evolve this structure into something that is interactive?
Some people don’t bother to ask this question; they just take a story and cram it
into a computer, add a few meaningless technological tricks, and pronounce it
“interactive.” I shall dismiss such travesties without further exercise.

For the purposes of this chapter, we need to focus on a single critical com-
ponent of interaction: the element of choice on the part of the user. The user
gets to make decisions, to effect choices. If the user doesn’t get to make a
choice, we don’t have interaction; we have a plain old story. A choice would be
expressed in our little diagrammatic scheme with something like this:

6490 AID Chapter 7  10/18/02  4:27 PM  Page 76



Architecture 77

This is called a branchpoint, a term taken from programming. The user
comes to a point in the story where she gets to make a decision. She has several
options: that is, the story can proceed in any of several directions. The user
decides which option to take. The important fact is that there is more than one
choice—the user has a meaningful choice that will influence the future direction
of the interactive story.

Now, how do we put this structure into our storyline? Well, the obvious
thing to do is to simply cram it into the storyline structure like so:

Of course, this creates a new problem: what falls below the empty nodes E
and F? The obvious thing to do now is to continue the process of giving the
user options by tacking additional branchpoints onto the structure. This yields
a storytree:

6490 AID Chapter 7  10/18/02  4:27 PM  Page 77



78 Chapter 7

Now I’d like to ask, how many layers should the structure have? That is, how
many rows should there be in the pyramidal structure? I have drawn just four
layers, but what would a real interactive storyteller have?

A quick way to answer this is to look again at the storytree with one portion
highlighted:

The highlighted portion, you will note, is exactly the same as the storyline at
the beginning of this example. In other words, a storytree is a storyline creator;
a single path through a storytree yields a storyline. We can therefore apply what
we know about stories to estimate the appropriate depth of a storytree. A movie,
for example, will have many more than ten events or actions in it, and certainly
less than 10,000. In other words, I think that a movie has something like a hun-
dred or a thousand events or actions in it. Novels tend to be longer, perhaps.

Let’s be conservative so we get the smallest reasonable number of nodes.
Let’s assume that our interactive story-thing needs only a hundred events or
actions. In other words, there will be 100 layers in our interactive story. Let us

6490 AID Chapter 7  10/18/02  4:27 PM  Page 78



Architecture 79

further assume that each branchpoint will have only two choices available to it—
this is the absolute minimum required. This means (according to a standard cal-
culation) that the storytree will have a total of 2100 nodes in it. How many is that?
About 1030. And how big is that? If you employed every human being on this
planet to create nodes, each person making one node every second, working 24
hours per day, 365 days per year, then it would take 5 trillion years to make the
nodes necessary to build that single storytree. You’re going to have difficulty
making your deadline.

Foldback

A variety of solutions to this problem of the geometric growth of nodes have
been developed over the years. One of the earliest solutions, first presented 30
years ago, had a structure like this:

I call this trick foldback. The storyline folds back on itself. For example, con-
sider the first four nodes, labeled A, B, C, and D. Suppose that node A repre-
sents Eloise saying to Bart, “I’m just not attracted to wimps like you, Bart.”
Suppose further that node B represents Bart wringing his hands and pleading
with Eloise, while node C has him sneering at her, “Ha! I can find better sex in a
broom closet!” Now, node D might represent Eloise declaring, “Oh, Bart, don’t
say that—I’ll take you back!”—which response is appropriate to either of Bart’s
actions. It’s clever, but the problem with this method is that it robs the interac-
tivity of any meaning. Whatever Bart does, Eloise is going to take him back.
Indeed, if you step back from this diagram a few feet, it   doesn’t look any differ-
ent from a regular storyline. This is nothing more than a storyline masquerad-
ing as a storytree. This is fraudulent interactivity.

6490 AID Chapter 7  10/18/02  4:27 PM  Page 79



80 Chapter 7

Kill ‘Em If They Stray

Here’s another approach:

I call this the kill ‘em if they stray approach to storytree design. The designer
allows the user many options, but almost all of the options lead to the death of
the user or the termination of the story. This scheme merely spruces up a linear
storyline with many opportunities to fail along the way. This is not what I call
user-friendly. Moreover, it’s still essentially linear. Many adventure games and
puzzle stories fit this model.

Obstructionist Stories

Another variation on this is the obstructionist scheme wherein the user is pre-
sented with a linear sequence of story nodes separated by obstacles:

6490 AID Chapter 7  10/18/02  4:27 PM  Page 80



Architecture 81

The user runs into a brick wall at each stage in the story and must solve the
puzzle to proceed to the next stage of the story. This is interactive after a fash-
ion; the user is permitted to interact with the puzzle. But, of course, there’s no
interaction with the story itself. This is Skinner Box interactivity, reducing the
user to the status of a rat in a maze, required to push the correct levers to get
the reward—and punished for failure. Despite its serious flaws, the technique
has been used in a number of commercially successful products. I consider it to
have the staying power of any other fad.

Hand-Wired Storytree

Next comes the hand-wired storytree, too messy to diagram. The designer sits
down and draws a big diagram showing how every node connects with every
other node. He builds the entire structure by hand, plotting connections and
figuring pathways. This sounds better; after all, it’s hand tooled and surely must
be finely tuned. The problem with such designs is that they are sorely limited by
the amount of time that the designer can put into them. Even the largest such
designs sport no more than a few hundred nodes. Moreover, these are often
crippled in other ways. They support only the most primitive of Boolean con-
nection schemes. In other words, the pathways in the system are opened or
closed by the simplest of yes-or-no decision schemes involving such lame-
brained factors as whether the user uses the correct item, whether he recites the
magic incantation, or some other such simple-minded pap.

Combinations of the Above

Then there are the combinatorial schemes, which combine various elements of
the other architectures. A bewildering array of such methods have been tried.
One such scheme attempts to solve the problem of the gigantic storytree by link-
ing together a group of smaller, more manageable storytrees. The links between
the small storytrees are simple, direct connections.

This is a common approach in graphic adventures. Each small storytree is
used to establish a particular subgoal. The first storytree might determine
whether you wheedle the orange key from the one-eyed pirate. With the
orange key, you can enter the secret room where the purple dragon awaits;
now you enter a new storytree whose outcome, if successful, advances you to
the next storytree.

This system fails because each subtree produces a simple success-or-failure
result. This means that we can replace each of the small storytrees with a single
node that asks the question, “Did the user succeed at the assigned task?” It
operates in exactly the same way that the obstructionist story operates.

In general, combinatorial schemes fail because there are no exploitable syn-
ergies between the various strategies. Simple combination of two dissimilar com-
ponents seldom accomplishes anything; there must exist some relationship

6490 AID Chapter 7  10/18/02  4:27 PM  Page 81



82 Chapter 7

between the two that permits a useful synergy to emerge from the combination.
A metal alloy works because the atoms of the two metals are different sizes and
will fit together in a tighter, stronger structure. Cramming random bits of metal
together doesn’t make better metal.

The Desirability of Bushiness

A good storytree is rich and bushy; a storytree that is narrow or scraggly is not
particularly interactive. Why? There are two ways to answer this question.

One way is to think in terms of user choice. The user wants to make
choices. Choice is the means by which we express our free will; choice is the
manifestation of our personalities. Hence, a good design offers the user many
choices—many branches emerging from each branchpoint. 

Another way to look at this problem is to think of the interaction as an act
of individuation. When our user enters our storytree, she desires to find her
own personal resolution to the challenge presented in the interaction. This
could be her own document or even her own spreadsheet. This is fundamental
to human nature. In anything we attempt, we seek not to replicate the results of
the masters, but to create our own unique solution. What cook fails to make
some small individuating adjustments in the recipe in the cookbook? It is an act
of self-expression, of asserting our individuality.

What do we do to the users of our interactive entertainment? We cram
them into a slot, demanding that they follow our storyline. We narrow their
options, declaring some options to be correct and others to be incorrect. We
give them only a few choices, because we are too lazy to recognize just how var-
ied our users are.

If we wish to offer our user a truly satisfying interactive experience, it is
imperative that we allow each user to express her individuality during the expe-
rience. There should be billions of pathways through the storytree, so that each
user can find her own path through, coming to her own conclusion—and it’s no
fair declaring that only a handful of such pathways are correct. The average user
should be able to make her own choices and still find a pathway with a satisfying
conclusion. The user of a word processor wins or loses according to her own
writing standards, not those of the designer. Thus, we want to create a storytree
that is thick and bushy, with billions of pathways leading through it. This is the
only way to guarantee that each user will be able to find an individuating path-
way through the storytree.

Broader Applications

These concepts can be applied to design areas other than games or interactive
storytelling. To do so, I must engage you in a long-winded and roundabout rea-
soning process. It begins with another one of my simple diagrams:

6490 AID Chapter 7  10/18/02  4:27 PM  Page 82



Architecture 83

By the way, we need a shorthand label for these diagrams. Computer scien-
tists use the term graph for something similar to this, and some people prefer to
use state diagram, but each of these is used in somewhat different ways than we
need. To avoid confusion, we should use a distinct term, and I suppose that this
burden falls upon my already fatigued shoulders; I therefore propose the wildly
immodest term Crawford diagram to refer to them. At least it’s better than dacty-
lodeiktous diagram.

This tree structure could just as well be applied to a word-processing pro-
gram, the only difference being that, instead of two or three branches at each
node, we would see about a hundred branches: one for each key on the key-
board. The top node is a blank page. If this diagram were applied to a website,
then the top node would be the home page.

To use the word processor, the user starts at the top of the tree with a blank
page and selects a letter to type, which creates a new state, a document with that
single letter. This act also moves him down one layer in the tree. He then selects
another letter to type, which takes him to a new state and the next lower layer,
and so on until he reaches the bottom of the tree and his document is complete.
The bottom of the tree contains zillions of nodes, each representing a document
containing characters in some sequence. The great majority of these imaginary
documents would be nonsensical collections of characters, but one in a zillion
might be a Shakespearean sonnet. Thus, in this way of thinking, the user does
not write a document so much as he chooses a document through a long
sequence of small choices (keystrokes).

Differences between Word Processors and Games: Two New Concepts

But there is a big difference between word processors and games: the former do
their job better than games. My word processor does everything that I want to
do, and then some. By contrast, I have yet to play a game that gave me such a
sense of satisfaction. Every game I have ever played restricted my freedom of
action, refused to permit me to do the things that I wanted to do. How can it be
that games and word processors can yield such different results when they are

6490 AID Chapter 7  10/18/02  4:28 PM  Page 83



84 Chapter 7

structurally identical? What is it that word processors do that games don’t do?
The answer to this question will tell us how to make any interactive application—
including word processors—better.

To answer that question, I shall introduce two new concepts. The first is the
set of accessible states in a tree. These are all of the states that the user can get to
as he moves down the tree. In a word processor, this is the humongous set of all
documents that the user could theoretically create; in a game, it is the set of all
realizable paths through the game; in a storytree, it is all the different stories
that could be experienced.

The second concept is a little more difficult; it is the set of all conceivable
states. These are the states that the user might expect to be able to access. In
the case of the word processor, these would include all the documents that a
user might want to create. In a game, it would include all the game endings that
a user might visualize. In a storytree, it is all the ways that the user might imag-
ine that the story could develop.

A Criterion for Excellence

I now direct your attention to the ratio of the number of accessible states to the
number of conceivable states. You calculate this ratio by dividing the number of
accessible states by the number of conceivable states. I suggest that this ratio
provides us with a criterion for evaluating the overall merit of a product. 

Consider now that the source of my satisfaction with my word processor lies
in the fact that “anything I want to do, I can do.” In other words, any state that I
expect to access, I can access. Let’s make up some plausible numbers for a word
processor to see how the ratio works. Let’s say that I can expect 100 gazillion
states, but my word processor can’t quite handle all of them; it can reach only 99.9
gazillion states. So we might calculate the ratio for a word processor as follows:

interactive excellence = accessible states / conceivable states

= 99.9 gazillion states / 100 gazillion states

= 0.999

The ratio of accessible states to conceivable states is very nearly 1. On the
other hand, I do not have the same experience with games. Many times in
games I feel trapped by the design, unable to do the thing that I want to do. In
other words, the state that I expect to access is not there. Thus, with games, the
calculation might look like this:

interactive excellence = accessible states / conceivable states

= 20 gazillion states / 100 gazillion states

= 0.20

We have here a way of gauging the interactive excellence of any interactive
design. Now, I’m not suggesting that one should literally perform this calcula-
tion by counting up all the accessible states and all the conceivable states; I don’t

6490 AID Chapter 7  10/18/02  4:28 PM  Page 84



Architecture 85

have a gazillion fingers. But we can use our imaginations to get a hunch as to
whether the ratio is big or small.

More important, this suggests a way to improve our designs: the more
closely the ratio approaches 1, the better our design will be. There are only two
ways to increase a ratio: increase the numerator or decrease the denominator. I
shall take up the latter case first.

Decreasing the Number of Conceivable States

Decreasing the number of conceivable states sounds silly, doesn’t it? How can a
designer lower the expectations of users, short of including in the package a
coupon for a free frontal lobotomy at the nearest hospital? As it happens, we
designers have a great deal of power, for we set the expectations of our users
with the cues we give them and with the language of interaction that we provide
to them. Most programs inflate user expectations and then confound those
expectations. We do this by suggesting that the software universe inside our pro-
gram is larger than it actually is.

What we need here is the closure discussed in Chapter 4. A good interactive
design presents a closed and complete universe. Leave out the petty things so
that you can implement the important features completely. The emphasis is not
on parsimony but on closure, although parsimonious design is often necessary
to achieve closure. Just remember that every chink in your system’s closure will
leak users into the void of unanticipated feature space. Your users, strangling in
the vacuum, will perceive a deficiency and blame you for it—quite rightly. The
expressive range of your design must be hermetically sealed against such leaks.

There are two means by which you can fail to achieve closure: your choice
of feature set and your user interface. Too many designers succumb to over-
weening pride in creating products that attempt too much. In their eagerness to
expand the universe of their design, they toss in features willy-nilly without rec-
ognizing the geometrically increasing expectations that such features instill in
the users. Whenever you add a new feature to a design, that feature can interact
with every other feature in your design. You may never consider what might
happen if the gamma correction tool were used in conjunction with the Korean
language translator, but some of your users certainly will. It is incumbent upon
you to anticipate all those possible combinations and provide for them.

But the problem extends beyond the mere possibility of unanticipated com-
binations of existing features. A new feature added to a program often suggests
related features to the user. If you add a hyperbolic sine function to your pro-
ductivity application, you’d damn well better put in the hyperbolic cosine func-
tion and the hyperbolic tangent function, as well as the inverse of each of these
functions; by creating one function, you have also created the expectation of five
others. If you permit the user to export a special file format, then you must also
permit the user to import that file format. If your game shows a door, the user
must be able to open that door. If your word processor offers superscripts, it
must also offer subscripts. 

A good example of the user interface side of this problem is the command-
line interface, such as used in DOS. You may not remember this once-ubiquitous

6490 AID Chapter 7  10/18/02  4:28 PM  Page 85



86 Chapter 7

operating system, so I’ll describe it here. The screen was not graphical but tex-
tual; you saw a bunch of obscure text codes on the screen. Then you might type
a command like this:

>C:\MYDIR\WORDPRO.EXE

This is one of the simpler commands. It directs the computer to run a pro-
gram that can be found on the hard disk (C:) in a directory called MYDIR, and
the program itself is called WORDPRO.EXE.

This looks simple enough, but personal computers kept growing, adding
ever more capabilities and complexity. To cope with this growth, designers kept
adding new commands to the basic set. The commands grew longer and more
complicated; there were so many that only the experts could remember how to
use them.

There is no question that command-line systems are inferior to the graphi-
cal user interfaces (GUIs); except for UNIX, a hoary and hairy command-line
operating system for programming wizards, and Linux, its open-source deriva-
tive, the industry has abandoned such interfaces in favor of the GUIs. But the
shift away from DOS was not arbitrary or accidental; there were fundamental
reasons for it. The most important of these is that command-line interfaces
increase the number of conceivable states far beyond the number of accessible
states. You can type zillions of different expressions on a keyboard, and given
the exotic spelling of DOS commands, almost anything you type looks reason-
able, but only a few thousand of them will actually do anything useful. In other
words, for DOS, the calculation looks like this:

interactive excellence = accessible states / conceivable states

= a few thousand states / 100 gazillion states

= 0.000000...0001

That ratio is the best explanation for why DOS is dead.
The term command-line interface is usually applied to operating systems.

When we talk about the same thing used inside an application program, we call
it a text parser—and text parsers are an even worse disaster than command-line
interfaces, because these latter use a parsimonious set of contractions. For what
it’s worth, you can be pretty sure that neither UNIX nor DOS will have a com-
mand as long-winded as, say, dissimulate, DSMLT, or DSMT, perhaps, but never
anything so obvious as the actual word. Text parsers, on the other hand, pur-
port to recognize a subset of normal English vocabulary. You can type expres-
sions such as “Pick up the rock,” and the parser will understand what you mean;
isn’t that wonderful? But there’s a vicious devil lurking in the details of all
parsers. A parser suggests to the user that any valid English expression will be
accepted by the parser, but in fact most parsers have working vocabularies of a
few thousand words. “Pick up the rock” might work, whereas “Pick up the
stone,” “Grab the pebble,” “Take hold of the geode,” or “Seize the stony slab”
won’t. Thus, text parsers perpetrate a cruel falsehood on a user. They create
gazillions of conceivable states, but they provide only a few million accessible
states (at best).

6490 AID Chapter 7  10/18/02  4:28 PM  Page 86



Architecture 87

The simplest, easiest, and most honest way to decrease conceivable states is
seldom used: tell the user candidly what you can’t do. The hype-driven world of
computers has closed its eyes to the clarifying power of the disclaimer. I’m sure
that all the marketing suits out there will reach for the garlic and silver cross
when I suggest that a little truth goes a long ways. I realize that marketing con-
siderations require you to put a positive face on your software, but I warn you
that a positive face does not compensate for a negative reality.

For example, it would have been much easier on us if all of Windows’ capa-
bilities and incapabilities were clearly presented somewhere. By including hun-
dreds of obscure functional keypresses in the operating system, Microsoft
ensured that reasonable people would suspect every key combination of doing
something—and by failing to explicitly deny such expectations, it compounded
the problem. Windows should have a little warning box that pops up whenever a
user types some oddball combination of keys. The warning box should say some-
thing like, “Here is a list of all the oddball key combinations that do something,
as well as their functions. And here is a list of all the oddball key combinations
that don’t do anything at all.”

The same thing goes for mouse input. Every time a user clicks an inactive
screen object, a pop-up window should explain why that object is inactive and
what might make it active, if anything. A good system will go further and refer
the user to controls that might accomplish what the user seems to be driving at.
As I explain in Chapter 5, dimming menu items declares that they aren’t func-
tional, which is good, but it’s even better to explain why they are dimmed and
what can be done to activate them.

This rule of negativity is especially important with websites. The typical
browsing user has a pretty clear need in mind and seeks only to determine if
your website can satisfy that need. We all know that a website can be gigantic;
that creates the expectation that it just might have what we want. So we browse
and meander through the website, examining all manner of useless pages in
search of our goal. The bigger and more thorough a website is, the more time
we are likely to waste searching for our grail. It would be much better if every
website devoted some page space to describing what it does not include; that
might save the users lots of time. For example, I wasted a good deal of time at
the Apple website trying to locate a bug report page, as I had found a couple of
bugs in AppleWorks and I considered it my solemn duty as a user-citizen of the
AppleWorks world to report bugs. Although my expectation of a bug report
page was entirely reasonable, no such page was accessible, and the only way to
learn this was by trying and failing repeatedly. Remember, negative information
is every bit as useful as positive information. 

If you build a big website all about George Washington, but you have no
information about his financial affairs, you might as well say it up front. The user
who pokes all through your website looking for that information is going to be
just as disappointed either way; do you want her to be angry with you as well?

To conclude: we can decrease the number of conceivable states by carefully
designing our listening structures to suggest nothing more than we intend.
Where ambiguities remain, we should explicitly disclaim reasonably conceivable
(but inaccessible) states. Remember that great black-and-white photographers
pay just as much attention to shadow as to light.

6490 AID Chapter 7  10/18/02  4:28 PM  Page 87



88 Chapter 7

Increasing the Number of Accessible States

How might we increase the number of accessible states? How can we make our
trees thicker and bushier? The obvious answer is to provide more branch-
points from each state—more verbs. Here are some techniques that will suggest
more verbs.

Add More Variables
The first tactic we might use is to increase the number of variables used in our
designs, most often by replacing a constant element of our application with a
variable element. This is the most commonly used way to increase the power of
applications, although in most cases I suspect it is used unconsciously, as an
indirect result of other (less strategic) considerations. The earliest word proces-
sors, for example, did not permit multiple fonts; there was just one standard
font. It didn’t matter back then, as the printers also offered only a single font.
The decision to add font capability to word processors could also be described
as a decision to transform the printing front from a constant to a variable.
Designers then gave control of that variable to the user. In general, adding more
variables to your design always increases its flexibility and power. Thus, this one
change led to other possibilities: new variables in font size and style.

Sometimes the constants in your program are not immediately recognizable
as constants. For example, imagine a web page with a button that takes the user
to another page. That link is a constant; would it be more useful as a variable? A
search function, for example, could be thought of as a variable link whose value
depends on the search text entered in the associated text field. 

There is a dark side to this power: button-mania on the part of the designer
often instills button-phobia on the part of the user. Every variable you add is one
more chore for the user to handle, one more page in the user manual to be read.
An old concept from game design is useful here: the color-to-dirt ratio. Every new
feature that a game designer adds increases its colorfulness. If I were to add, say,
stock speculation to Monopoly, that would certainly make the game more color-
ful to play. It would give the users more choice in their financial decisions, more
flexibility, and more game-playing power. But it would also entail a whole raft of
new rules, more cards for the Chance and Community Chest sets, some special
spaces on the board, and so forth. All this bureaucratic detail constitutes dirt in
the game design. The designer must then ask, “Is the color I’m adding with this
feature worth all the dirt it brings in?” Similarly, the designer of any interactive
application must always consider the color-to-dirt ratio of any contemplated fea-
ture. More variables add more color, but they also add more dirt.

For example, a great many programs now offer “configuration sets.” These
are different versions of the preferences options available in so many programs.
The use of preferences allows the user to set up the program exactly the way she
likes it. For example, preference files might contain information about the
default font to use, the most commonly accessed server, the size and placement
of the window for a new document, and so forth. Preferences are a great idea,
and most programs now have some kind of preferences system. But some pro-
grams go even further: they make the preference file itself a variable, so that the

6490 AID Chapter 7  10/18/02  4:28 PM  Page 88



Architecture 89

user can choose among different groups of preferences by selecting one of sev-
eral preference files. If you’re in a mood for something exotic one morning, you
can choose the Exotic preference file to get odd-shaped windows with that
Asian-looking font. Later in the day, when you are to demonstrate something for
your boss, you might change to the “Safe and Staid” preference file to give the
program a more conventional look. I’m sorry, folks, but this is carrying the use
of variables too far: you don’t get much color for a lot of dirt. Sure, there are a
few hundred geek users around the world who love the feature, but the great
majority of users are too staid to appreciate such a feature.

Replace Boolean Variables with Arithmetic Variables
When you do add a variable, you should usually make it an arithmetic variable as
opposed to a single-bit Boolean variable. A Boolean variable can take only two
values: 1 or 0, yes or no. There are plenty of variables that require Boolean treat-
ment. For example, in the Print dialog box, the check box for collation presents a
Boolean variable. Let’s face it; collation is something you either do or don’t do;
there’s no partial form of collation. Thus, the user must answer the simple ques-
tion, “Do you want it collated?” with either a yes or a no—a Boolean variable. We
normally use check boxes to allow users to control Boolean variables. 

An arithmetic variable, by contrast, is a number; it specifies how much or
how many instead of just yes or no. In general, you should strive to find uses for
arithmetic variables rather than the more limited Boolean ones. Don’t simply
keep track of whether the user has entered any keystrokes in the word processing
document—record how many keystrokes he has entered. That way, instead of
merely refusing to save an unchanged document, you can more intelligently
advise your user: “You’ve typed 5,000 keystrokes without saving; why not take a
break and let me save them for you?” 

On a website, you can keep track of how many times a unique visitor has hit
each page in the last 10 minutes; this knowledge permits you to treat that visitor
in a more responsive manner. Perhaps he’s lost, perhaps he’s uncertain, perhaps
he could use some guidance. An addendum to the page might just help him out.

For your educational software, if you are testing a student, don’t just ask
whether the answer was wrong; determine how many times the student
answered the same type of question incorrectly. In some cases, you can even
measure just how far off the mark the answer was. This information can be prof-
itably put to use devising material to assist the student later.

Even some game genres are still stuck using Boolean variables when they
should have graduated to arithmetic variables. Interactive fiction has a particu-
larly egregious attachment to Boolean variables. The field could develop much
more richness if it started using variables like “how big a rock does he carry”
rather than “is he carrying a rock or is he not?”

Eschew Hard-Wired Branching for Computed Branching
Another wrong-headed practice is the use of explicitly defined branches in a
tree. I have never seen this error in productivity applications, but it is depress-
ingly common in games and educational software, and central to the organiza-
tion of websites.

6490 AID Chapter 7  10/18/02  4:28 PM  Page 89



90 Chapter 7

Whenever a designer creates an explicit link between one node and another,
she implicitly rules out the many variations that might pop into a user’s head.
Explicit links are like Boolean variables: either you follow the link or you don’t.
A user whose needs are not as starkly defined as the choice you offer will expect
a greater range of choices. Simple arrangements like this are acceptable for the
basic navigational operation of a website, but for delivering greater value, you’ll
need to build your pages on the fly to meet the individual requirements of each
user. Why must your pages be cast in stone before the user even arrives?

Every time you use a search engine, it builds a custom page presenting the
results of your search. Why must customization be confined to something so
simple as a list of items from a database? Instead of building 3,000 pages for
your users to delve tediously through, why not organize your site more algorith-
mically, and build custom pages for each user? If you’re designing a small web-
site, explicit links are fine, but as sites grow larger, the need for more powerful
listening powers increases dramatically—and text is far more expressive than
mouse clicks. Let your users type what they want and then calculate how to give
it to them.

Use Indirection
As much as possible, push your design thinking away from the concrete and
towards abstraction and indirection. This is a complicated issue; I’ll come back
to it in Chapters 20 and 21.

Crawford diagrams provide another way of thinking about interactivity designs. They
illustrate some of the common errors, and suggest some useful desiderata. They are not
adequate as design blueprints. The ratio of accessible states to conceivable states is a
good measure of the quality of the interaction. Work to decrease conceivable states and
increase accessible states.

6490 AID Chapter 7  10/18/02  4:28 PM  Page 90



PART TWO
DESIGN ADVICE

6490 AID Chapter 8  11/4/02  11:34 AM  Page 91



6490 AID Chapter 8  11/4/02  11:34 AM  Page 92



8
G U I D E L I N E S

Always design the verbs first. Don’t start with the
technology. Be on guard against the egotistical ten-

dency to speak. Response to user actions must be fast.
Organize verbs into logical groups. Prioritize verb accessi-

bility according to frequency of use. Tree architectures should
be as square as possible. Design the loop as a whole. Don’t set
up false expectations. Say what you mean. Don’t describe the
problem—offer the solution. Speak with one voice in four tones.

It has taken seven chapters, but you now have enough of the fundamentals
under your belt to actually start applying them. This chapter offers guidelines—
not absolute rules! There are always exceptions to these guidelines, and I’ll try
to characterize some of those exceptions.

Start with the Verbs

This is the first and foremost rule of good interactive design, and the word rule is
truer than guideline in this case. At the outset of the design process, after you have
established the goals of the design but before you have begun work on the design
itself, you must ask yourself the question, “What are the verbs in this design?” All
through the design process, you must ask that question again and again.

6490 AID Chapter 8  11/4/02  11:34 AM  Page 93



94 Chapter 8

As I pointed out in Chapter 4, listening is the hardest step to design. That in
itself should make verb design the first task of the interactive designer. In any dif-
ficult project, you should always tackle the toughest task first. If you fail, there’s
less work to throw away. If you start with something other than the verbs, the
unavoidable constraints of verb design will twist your design around into a pret-
zel. Hold off adding the salt and baking it until the twisting is complete.

By verbs, I mean the choices available to your user. These are not the key-
strokes, button clicks, scrollbar actions, menu choices, and hotlink selections
that are part of the standard user interface toolbox. The verbs are the actions
you intend to make available to your user. The details of precisely how you will
make your verbs accessible to the user can be worked out later. But before you
begin laying out radio buttons and check boxes, you need to make more funda-
mental decisions. If it’s a word processor you are designing, what do you want
the user to be able to do? Don’t think in terms of your internal model—think in
terms of the final product. Should the user be able to print pages upside down?
Should the user be able to artificially stain the printout with virtual tears? How,
exactly, are you empowering (gad, how I hate that word!) your user?

If you’re designing a website, ask yourself what you expect the user to be
able to accomplish on your site. Should he be able to compare your prices with
your competitors’? Should he be able to see your inventory to determine
whether the product is in stock? Should he be able to contact you directly, or
perhaps through a standard form? Make these decisions first—then and only
then can you start designing the user interface. 

Sit down with a piece of paper and write—in plain English, not computer
terminology—what your software will enable your user to accomplish. You will
probably encounter difficulty with the intrinsic vagueness of defining goals.
Don’t be frustrated; attack the vagueness. Your job as a designer is to figure out
the best scheme for organizing all these things in your user’s mind. Continue
this process of attacking vague wordings, replacing them with longer and more
explicit wordings. Of course, as you go, you’ll need to think about the details of
the design, and you’ll slow down as you start grinding through those details.
Remember: during this process, you are specifying what the user does, not what
the screen looks like or what the program will do or how it will work. Stick to
the verbs! Every time you expand something, expand it only in the direction of
the user’s choices. 

I’m sorry to tell you that this strategy will not design the entire product for
you. You will not end up with a massive document that need only be handed to
a programmer for coding and the product will be ready to ship. Somewhere
along the way, the details of verb definition will get so picayune that you’ll be
forced to tackle the associated thinking and speaking parts of the design.

In the listen-think-speak triplet, the verbs are what you listen to, or what the
user speaks with. All three steps are equal in final importance but unequal in
difficulty of implementation. Speaking is the cheapest, quickest, and easiest part
of the design. Thinking is harder, but the listening step is the great demon that
lays low most interactive designs. If you are a project manager allocating budget
to an interactive project, you should not allocate approximately one-third of
your budget to each of the three steps—set aside the biggest chunk of resource
for the hardest part, listening.

6490 AID Chapter 8  11/4/02  11:34 AM  Page 94



Guidelines 95

To understand why you should do this, hearken back to the previous chap-
ter. The Big Idea there is simple: the ratio of accessible states to conceivable
states is a good measure of the quality of the interaction. Verbs are what make
states accessible to your user. If you put lots of effort into the verbs, you’ll be
giving more and more state accessibility to your user. By contrast, every time
you speak anything to your user, your words, sounds, or images can trigger all
sorts of ideas—conceivable states—inside your user’s head. Thus, all those
turkeys who spend tons of money getting great graphics, sound, and animation
(the speaking part) have got it exactly backwards: they’re breeding more conceiv-
able states and doing nothing to improve the number of accessible states.

I promised you some exceptions to this rule, so here are a few. If your
design is constrained by a specification that refers directly to either the thinking
part or the speaking part, then you don’t have much maneuvering room.
Consider, for example, the poor soul who was assigned to design the National
Geographic interactive archive. This was a mammoth project, and the project
specification was clearly something like “make every back issue, every article,
every photograph available to the user.” Let’s face it; this is a pure speaking-step
project. The images and text (speaking stuff) are the entire point and purpose
of the project. The only verbs that were conceivable were verbs along the lines
of “let me look at the images and text in this fashion.”

Another example might be an input device constraint. Your boss comes to
you with a new, electronic, squeezable roll of toilet paper. You can squeeze it,
and it sends a signal to a computer! Your assignment is to design the world’s
greatest interactive thingamabob to show off the wonderful, squeezable, elec-
tronic roll of toilet paper. In such a case, the only verb you can give your user is
“squeeze the toilet paper.” 

These, however, are extreme cases, and since they’re the best I can come up
with in the way of exceptions to my rule, you can see just how imperious that
rule is. Throughout the design process, an insistent voice in the back of your
mind should nag incessantly, “What does the user do?” If you don’t have a good
answer to this question, then your product is not very good in the interactive
dimension.

Don’t Start with the Technology

This is the converse of the previous admonition. This error commonly arises
when programmers usurp design responsibilities. Programmers love technologi-
cal tricks, and they especially love new and interesting technological tricks. They
therefore spend a lot of time building cute little software oddities and then ask-
ing, “How can we turn this into a game?”

I will give this behavior its due before trashing it. There is a place for playful
experimentation of this type: the research lab. Many of our most dramatic discov-
eries come when some bright kid in a lab discovers some odd goo and asks,
“How can we turn this into a product?” Every industry needs its research labs to
advance this kind of thinking, as it is absolutely essential to the long-term future.

However, the jump from interesting technological trick to working product
is a long one indeed, and far too many designs are little more than cute techie

6490 AID Chapter 8  11/4/02  11:34 AM  Page 95



96 Chapter 8

tricks shoved into a software shell. This is especially true of the games industry,
which has institutionalized opportunistic software design. 

Although there have been some striking successes from this strategy, it is far
more likely to yield failure. It starts off on the wrong foot. Instead of asking,
“What can I do for my customers?” it asks, “How can I convince my customers
to pay for this technology?” Whenever you get the relationship between cus-
tomer and yourself mixed up like this, you are setting yourself up for a disaster.

Be on Guard against the Egotistical Tendency to Speak

This rule applies throughout the design process. Most designers are egotists
who would rather inundate the user with their brilliant expressions than actually
let the user do something. They begrudge the user his control of the program
and regard graphics, sound, animation, and other speaking stuff as their chance
to strut their stuff. Like the boor at the party, the egotistical designer wants to
do all the talking and never, ever listens. Egotism that robs a designer of her
sense of balance and even-handedness is ruinous.

You are not creating your design to make yourself dactylodeiktous by virtue
of your vast talent, expertise, or vocabulary; you do this to help your user (or
reader) get something done. I do not wish to throw cold water on your healthy
ego; my concern is that you apply it maturely. I offer my own towering ego as a
model for you to emulate. Was Chris Crawford spoiled by fame? The fawning
masses, the rivers of adulatory prose, the crowds of hysterically screaming nubile
nymphs—have all these things gone to my head to make me the hopeless egoma-
niac I now am? No, a thousand times no! Chris Crawford is too big a man to be
spoiled by such trivial things! I was already spoiled long before any of this hap-
pened to me. Mine is a mature egomania refined and developed since the day I
emerged from the womb and took a bow.

Designers lacking healthy egos cannot reach the peaks accessible to their
better-endowed colleagues. The egomaniac sets higher goals than she can rea-
sonably expect to achieve. In a poorly defined field such as interactivity design,
such is the stuff of creativity. A civil engineer doesn’t get too experimental with
the bridges he designs, because it is easy to reliably calculate what will and what
won’t work. But we don’t know as much about interactivity. We don’t know
where the limits are. So we need these foolhardy egomaniacs who blindly plunge
into the darkness, boldly going where no one in her right mind has gone before.

The egomaniac has another advantage over the more emotionally balanced
person. In the darkest hours of a project, when the problems seem overwhelm-
ing and there is no rational basis for hope, a reasonable person would start cast-
ing about for ways to scale down the goals of the project. But the egomaniac lies
face down in the mud of her own failure and draws herself up, proclaiming, “I
am beyond ze reach of failure! I weel find ze way!” Egotism, of course, takes a
back seat to reality, and sometimes she fails; but when she succeeds, it seems like
magic to the rest of the world.

There are, of course, liabilities created by egotism, such as the deadly differ-
ence between pre-project egotism and post-project egotism. The former serves to
inspire the designer to greater heights of achievement. The latter convinces her

6490 AID Chapter 8  11/4/02  11:34 AM  Page 96



Guidelines 97

that she has already scaled those heights. Post-project egotism blinds the designer
to the flaws in her work and robs her of the ability to learn and improve.

Then there are the embarrassing consequences of an ego that is foisted on
other people. There’s a big difference between nurturing your ego and unleash-
ing it upon the rest of us. Feel free to smile inwardly in secret appreciation of
your untouchable superiority, but it is another thing entirely to tell it to other
people. The mature, genteel egomaniac keeps to herself the untold story of her
towering intelligence and dazzling creativity.

So don’t feel embarrassed by that ego of yours. Go ahead—stand on the
craggy mountaintop, lightning bolts playing about you, fist thrust upward and
head held high as the furious wind hurls rain in your face. Laugh scornfully at
the elements that doubt your greatness. Shout lustily into the tempest, “I am ze
greatest designer in all ze universe!” Then scuttle back into your cave and return
to work, putting the appropriate amount of energy and creativity into the listen-
ing and thinking steps, rather than just the speaking part.

There are no exceptions to this rule.

Keep It Fast

I once served as a consultant for a project that had serious problems. The
designers had gotten the software working well, and when I toyed with it at their
offices, it worked just great. But then they burned a CD for me to take home,
and that’s where I encountered the killer problem: their software went out to
the CD every time the user did anything, and the two-second delay broke the
user’s stride. Back at the designers’ offices, they ran the software on their big,
fast machines with monster hard drives that made everything run like lightning.
They couldn’t see the problem. 

Here’s an experiment I urge you to try so that you might appreciate the
gravity of this problem. Select a very patient friend and engage him in conversa-
tion. Every time your friend says something, stare blankly and look like you’re
thinking while you mentally tick off two seconds; then respond. See how long
you can keep the conversation going before your friend grows irritated.

Try    
to       

understand       
a  

sentence    
that     

deliberately       
breaks         

the         
timing;      

see    
how        

irritating      
it         

is?

6490 AID Chapter 8  11/4/02  11:34 AM  Page 97



98 Chapter 8

Interactivity has a timing, a rhythm, a stride. Break that stride, and you ruin
the interaction. Yet the timing of interaction is intangible; you can’t simply look
at a JPG file or listen to a WAV file or read a text file to evaluate it. It is impera-
tive that you experience the interaction itself, not its disconnected components.
It’s not that interactivity is more than the sum of its parts; interactivity is not its
parts, but the entire dynamic of how they operate together—which includes the
timing of that dynamic.

The simplest manifestation of this rule is, you should move your software
over to a “typical target user’s machine” and play with it, asking yourself if it’s
fast enough. 

How fast should the interaction be? You can’t control the user’s timing, of
course, so you must assume that the user can respond at his leisure. Not so the
computer. The time between a user action and the computer reaction is the cri-
terion of quality. My rules of thumb on delay time are:

Less than 0.05 second Necessary only for multiple keystroke processing.

About 0.1 second Perfectly good for all other input.

About 0.5 second Adequate, but keep these to less than 50 percent of all
response times.

About 2 seconds Keep these to less than 10 percent of all response times, and
change the cursor during the interval to reassure the user that you
haven’t fallen asleep.

About 5 seconds Keep these to less than 1 percent of all response times, and change
the cursor.

10 seconds or more Keep these to less than 0.2 percent of all response times. Post a
message explaining the delay. Include a progress bar that
indicates how much delay time remains. Offer an abort option.

This table might seem overly strict, but in fact it represents the performance
of most good software. I shall use my favorite word processor as an example.
Here’s a table of its performance with various types of inputs in a typical writing
session:

User Action Delay Time Count of Uses Percentage of Uses

Print one page 51 1 0.02%

Start program 5 1 0.02%

Open document 2 2 0.04%

Scroll one page 0.4 15 0.3%

Keystroke <0.05 5,000 99.6%

(The printer took up 48 seconds of the print job.)

6490 AID Chapter 8  11/4/02  11:34 AM  Page 98



Guidelines 99

As you can see, my word processor easily meets the requirements of my
table. Of course, most other programs do more crunching and so fare more
poorly. Here are some results for my programming environment, CodeWarrior:

User Action Delay Time Count of Uses Percentage of Uses

Compile 18 1 0.1%

Start program 7 1 0.1%

Open project 3 1 0.1%

Single-step 0.4 100 8.9%

Scroll one page 0.2 20 2%

Keystroke <0.05 1,000 89%

Now let’s look at the performance of a program that doesn’t use many key-
strokes: a drawing program. Here is what a typical session looks like:

User Action Delay Time Count of Uses Percentage of Uses

Start program 6 1 0.09%

Load document 0.8 1 0.09%

Scroll one page 0.6 100 9%

All other actions <0.4 1,000 90%

Note that the scrolling operation in this application sits close to the border-
line of my table. Indeed, I find scrolling the most distasteful part of using this
program and organize my work to minimize it.

Last, let’s put my own work to the test. I present results for a typical session
with my program, the Erasmatron:

User Action Delay Time Count of Uses Percentage of Uses

Start program 3 1 0.2%

Load document 2 1 0.2%

Face draw 2 2 0.4%

Background draw 1 3 0.7%

Screentest 1 10 2.5%

Rehearsal 1 10 2.5%

Threadtest 1 10 2.5%

Decision script draw 0.5 200 51%

Keys screen draw 0.5 5 1%

Text screen draw 0.15 50 13%

Main screen draw 0.1 100 25%

6490 AID Chapter 8  11/4/02  11:34 AM  Page 99



100 Chapter 8

As you can see, my own work brushes up against the limits of my rule table
in several places. And indeed, the place where it breaks the rule, decision script
drawing, is the most irritating screen in the program.

Last, I ask you to consider how these timings compare with typical web per-
formance. Those of us who come in on 28-Kb lines experience typical page
jumping delays of three seconds on jumps internal to a site, and maybe 15 sec-
onds on jumps to new websites. In other words, the web egregiously violates my
timing rules. Ever wonder why people complain so much about the sluggish
speeds on the web?

Particularly nasty is the difficulty of setting the target system for a design.
Let’s face it: if you design your product to run on the latest, greatest hardware
(as the designers I mentioned earlier did), it will surely perform unacceptably on
average hardware. Your perception of what constitutes “normal” hardware is
skewed. You make your living with a computer; of course you have a better-than-
average machine! For that matter, most of your friends, associates, and acquain-
tances are likely in the same boat. From your point of view, nobody uses that
lousy two-year-old hardware. But in fact, that is exactly what most people are
using. You should assume that low-end consumers are using five-year-old hard-
ware, most consumers are using four-year-old hardware, most business users
have three-year-old hardware, and software professionals have two-year-old hard-
ware. You have to design your software to meet my timing requirements on the
machine most commonly used by your particular audience.

Are there exceptions to this rule? Of course! Many are the times when a
designer must sacrifice speed to attain some important feature. Breaking this
rule does not make you an international interactivity criminal; it just makes your
users less happy. If you think that the happiness they gain from the feature in
question exceeds the irritation they’ll feel at the delay, go ahead. Just remember
that the irritating effects of long delays are cumulative and synergistic; you can
bend the rules once or twice, but any more risks the customer’s ire.

A common error made in this regard arises from the cover-your-ass attitude
so common in business. We always seem to concentrate our energies on pre-
venting the complainable rather than achieving the best. Feature deficiency is
explicitly complainable; sluggish interaction is not. In other words, if your
design lacks some gold-plated feature, you can be certain that somebody, some-
where, will complain about the deficiency. On the other hand, if your design is
merely sluggish (as the direct result of adding so many features), people will be
less likely to pin the blame on you; besides, you can always defend yourself with
the old “Get a faster machine!” rejoinder. This is one reason why so many inter-
activity designs are feature rich and speed poor. 

How to Speed Things Up

There is no software that can’t be made to run faster. All software requires some
combination of three fundamental resources: memory, execution time, and the
sweat of the programmers. You can always reduce one of these three by increas-
ing the allocation of the other two. Thus, the easiest and quickest speed boosts
are obtained by grabbing more RAM. Turn off virtual memory on your machine

6490 AID Chapter 8  11/4/02  11:34 AM  Page 100



Guidelines 101

and replace it with the real stuff; then watch how much faster those big programs
run. Unfortunately, if your program eats up all the free RAM in the computer,
other programs can’t run—a major pain for your users. Tradeoffs, tradeoffs!

You can also give your programmers a few extra months to tighten up the
code; they can often wring a substantial speed improvement out of the program
with a few months’ work. But the biggest gains are always obtained by redesign-
ing the laggard feature itself. Zero in on the place where the program runs too
slowly; why is it running so slowly?

For example, I ran into a nasty problem while designing the Erasmatron.
The decision script display took too long to draw. There were two levels to
tackle the problem: the programming level and the design level. Since I wore
both hats, I pursued both avenues simultaneously. With my programmer hat on,
I found that the largest delays arose from my need to perform a series of inde-
pendent calculations for each and every word that appeared on the screen. In
other words, I couldn’t simply draw a long stream of text onto the screen—the
program would draw one word and then go off to perform more computations,
then come back and draw another word, and so forth. All those time-consuming
computations between the words were necessary to support a variety of nifty-
keen features I had built into the Erasmatron: the ability to click each word sepa-
rately, different colors and fonts for different classes of words, and so forth.
With my designer hat on, my choices were unpalatable: kill one or more of
those features, or redesign the entire display structure. At this point, the best
option was to throw more RAM at the problem.

Note that this decision required me to balance a design judgment against a
programming judgment. Because I can both program and design, I made that
decision inside my own head, and I am confident in its correctness. A designer
who couldn’t program would have to sit through several stormy meetings with the
programmers to achieve the same results and would never be sure that he made
the right decision. Who knows what those damn programmers are thinking?

Organize Verbs into Manageable Groups

You want to maximize the number of verbs in your software. Of course, you
can’t simply hurl 100 gazillion options at your user—there’s not enough screen
space. You need to organize all your verbs into usable groupings.

Often the nature of your design imposes its own structural groupings. A
word processor has a number of verbs for laying out the basic page: margins,
paper sizes, orientation, and so forth. Obviously, these verbs should be grouped
together. Other verbs control the appearance of the individual characters: fonts,
sizes, styles, and so on. Again, these provide an obvious basis for grouping.

However, there remain many situations where obvious groupings produce
unwieldy numbers of entries. In this case, it is important to recognize the limits
of human comprehension. People aren’t computers; they can’t handle too
much input.

Please note that I’m talking about the number of choices at each juncture,
not the total number of choices for the entire design. Your user wants to make
her choices confident that her decision is sound. If you confront your user with
87 choices on a single screen, the user might well be swamped in indecision.

6490 AID Chapter 8  11/4/02  11:34 AM  Page 101



102 Chapter 8

If the choices are already familiar to the user, then you can have more than
you otherwise would. A word processor gives its user about a hundred choices
in the keyboard input alone; that’s a great many, but all users instantly under-
stand the difference between a k and a w. Similarly, a stock market program
might present the user with a long list of stock symbols from which to choose,
but anybody using such a program would know what those symbols mean and
so would have no problem choosing one symbol from the long list.

The more difficult the decisions facing the user, the fewer choices you must
offer. Picking one stock from a long list is easy because the user already knows
which one she wants. On the other hand, a house design program must explain
some of the trickier decisions to the user, so it should break the process into a
series of small, manageable steps. This situation calls for fewer decisions. 

Here are some specific guidelines for organizing your verbs.

Prioritize Verbs by Frequency of Use

Not only must you group your verbs in a logical fashion; you must also prioritize
them. Prioritization was not so important in the early days of software design,
when the verb count was low. As programs have grown larger, however, the
number of verbs they use has increased. Some of these verbs are heavily used,
and others are rarely invoked. You want the most commonly used verbs to be
immediately accessible, and you want to keep the rarely used verbs in the back-
ground, where they won’t distract the user. Accessibility here is closely related to
visual priority, but don’t let that relationship dominate your thinking: putting
the most important verbs in the main window and the rarer verbs in dialog
boxes doesn’t adequately address the problem.

A more useful way to think about the problem is to recall the structure of
Morse code. The most common letters are assigned short sequences; the rarer
letters get longer, more difficult sequences. Thus, e is represented by a single
dot, and t gets a single dash, but q gets dot-dot-dash-dot, and x gets dot-dash-
dot-dot. You want to lay out your verbs in an analogous fashion.

You have a great variety of devices for segregating verbs by priority; here’s a
rough sequence in order of accessibility:

• Click or keystroke directly on data

• Double-click directly on data

• Click and drag directly on data

• Click a gizmo (button, check box, and so on) in main window

• Click-keydown or keydown-click directly on data

• Select an immediately executed menu item

• Activate a background window and click directly on its data

• Activate a background window and use one of its controls

• Raise and operate a single dialog box

• Raise and operate a tabbed dialog box

• Raise and operate nested dialog boxes

6490 AID Chapter 8  11/4/02  11:34 AM  Page 102



Guidelines 103

This list is not exhaustive; there are many more such arrangements. My pur-
pose is to illustrate the concept of accessibility, which is a combination of fac-
tors: the number of mouse clicks or keystrokes required to execute the verb, the
degree of mental indirection required to access it (operating directly on the data
versus using an indirect icon or menu item), and the degree of care required to
carry out these steps (seeking the correct window on a crowded screen). If your
design uses but few verbs, then you can concentrate them in the upper layers of
this sequence. But if you offer a rich and complex verb set, then you must
evenly distribute your verbs through this sequence. If a disproportionate num-
ber of verbs are clustered in a single level of accessibility, then the design will be
cumbersome. 

There is also the possibility of inviting your user to set the priorities. This is
done with button bars with editable contents. One user can dump that silly
drawing icon that he never uses anyway, while another user can include that spe-
cial font button that’s so useful. 

Be Square

Suppose you were asked to design a website presenting the collected works of a
renowned painter. Suppose also that there are about 350 works. How would you
set up user navigation to them? You could, of course, offer several indexes: an
alphabetical index by title, or perhaps a list sorted by creation date. But surely
many of your users won’t recall the title of a painting they want to see, or know
its date. How do you help them find it? 

Let’s suppose now that you decide to organize the paintings in a two-layered
tree based on their content. For example, you might come up with the following
organization:

Upper Layer

Living Things

Nonliving Things

Lower Layer

Living Things Nonliving Things

Cats Clouds

Flowers Mountains

Portraits of men Houses

Portraits of women Seashore

Groups of people Furniture

Trees Fields

Horses Ships

This might seem like a logical grouping of the paintings, but there’s a hitch:
you’ll need to stock each of those categories with 25 paintings. Sure, you made
the first choice easy (Living Things versus Nonliving Things), and the second
choice pretty reasonable, but the third choice is hell. To fit all those thumbnails
onto one screen, you’re going to have to make them tiny.

6490 AID Chapter 8  11/4/02  11:34 AM  Page 103



104 Chapter 8

You could, of course, break down each of the lower categories into two
smaller categories, so that each thumbnail menu holds only 12 images, but that
would probably be the wrong solution. The better solution is to look at the
upper layer: it has only two choices; you’re giving your user too few choices, fol-
lowed by too many. Suppose that instead you organized your tree like so:

Top Layer

Animals (previously Cats and Horses)

Plants (previously Flowers and Trees)

People (previously the two portraits and Groups of people)

Sea (previously Seashore and Ships)

Domestic (previously Houses and Furniture)

Landscapes (previously Clouds and Mountains)

Fields

Second Layer

Animals Plants People

Cats sleeping Mostly yellow flowers Portraits of bearded men

Cats playing Mostly red flowers Portraits of clean-shaven men

Cats eating Mostly blue flowers Portraits of young women

Cats fighting Multicolored arrangements Portraits of old women

Farm horses Single oaks Big crowds

Running horses Groups of oaks Small groups inside

Dead horses All other trees Small groups outside

And so on with the other four categories. Here’s what’s important about this
structure: It has seven upper layers and seven lower layers, and each of those
lower screens contains seven thumbnails. This is a perfectly square structure; it
has the same number of choices at each layer. It can be diagrammed thus:

7:7:7

The first structure, on the other hand, would be:

2:7:25

To be perfectly square, all the numbers must be the same.
This, of course, is theory, and anybody who applies it strictly is guilty of

numerology. There are many reasons to violate this guideline. First, it is almost
impossible to come up with a breakdown that’s so neat and tidy. If, for example,
you were required to assemble a website with the collected works of four differ-
ent painters, your upper layer would surely be the four painters. Now suppose
that painter number 2 has 4,073 paintings to be cataloged, and painter number

6490 AID Chapter 8  11/4/02  11:34 AM  Page 104



Guidelines 105

3 has only 116. There’s no way you can get that structure square; it’s necessarily
lopsided because the painters’ portfolios are lopsided.

Another time to chuck this guideline is when one or more of the layers
present choices so simple that it’s desirable to have many more than seven
choices in the layer. Suppose, for example, you are designing a website present-
ing maps of every major city on the planet. You’d probably want to set up the
first layer by continent, the second layer by country, and the third layer by city.
The first layer will have only six choices, but some of the pages in the second
layer will have several dozen choices. That’s not square, but it makes more sense.

Temporal Squareness
There’s an additional dimension to consider here: the sequence of steps that the
user makes to reach his goal. For example, my examples above presented two
arrangements of the paintings: 7:7:7 and 2:7:25. But why must we restrict our
design to just three steps? We could just as easily have broken it down into some-
thing like 3:5:5:5 or even 3:3:3:3:4:2. In these cases, the structure uses more
steps (from the user’s point of view) or more layers (from your point of view).
Are more steps better? That depends on several factors. The first is the delay
time between steps. If your program can present each step lightning fast, then
perhaps using more steps is better. But if, for example, you’re designing a web-
site, then you definitely don’t want lots of steps, because each page takes time to
download; you want to minimize the number of steps your user must endure.
However, if you have gazillions of options to present, then you have no easy
options. This is where the rule of squareness is most applicable.

Game designers face much the same dilemma with turn-sequenced (non-
realtime) games, but in their case it’s a question of how many verbs they want to
give their players versus how many turns they want the game to take. Fewer
verbs demand more turns to achieve richness; this, in turn, makes playtest bal-
ancing more difficult. There are no free lunches.

These three guidelines for organizing your verb set (manageable grouping,
prioritization by frequency of use, and squareness) offer completely different
desiderata for the same task; thus, they often conflict. It is simply not possible
to organize a large verb set that satisfies all three criteria perfectly. I can offer
no guidance in resolving conflicts between the criteria; you must exercise your
own judgment in this matter. 

Design the Loop as a Whole

In a later chapter, I recommend that the development process be broken down
into separate listening, thinking, and speaking efforts. While this is a natural
cleavage, it must not erect walls between the three efforts. Inevitably, a feature
in one of the three sectors proves impossible to implement. Try as they may, the
listening designers just can’t come up with a clean input system for a certain fea-
ture; or the thinking algorithms for another feature require megabytes of RAM;
or the display requirements of a third feature requires three CDs. Some design-
ers try to bull their way past these problems. A more constructive alternative is
available: alter the other components of the loop to absorb or compensate for
correcting the problem. If you can’t come up with a clean and simple verb to
activate a feature, perhaps you can use a thinking algorithm to anticipate the

6490 AID Chapter 8  11/4/02  11:34 AM  Page 105



106 Chapter 8

user’s desire for the feature or perhaps infer the command from some simpler
user input. Perhaps the program can be made smart enough to obviate the need
for the verb. Perhaps a more expressive screen display can get the user past the
problem. Likewise, a tough output problem can sometimes be sidestepped with
more expressive input structures; after all, the user may not need so much infor-
mation if she can exercise more direct control. 

This may seem to contradict my earlier warning that you cannot compen-
sate for poor design in one factor by executing better design in another. But
here I am recommending correction, not compensation. If your listening struc-
ture is badly designed, slapping some irrelevant graphics into the product won’t
do any good. If you’re willing to expend considerable amounts of creative sweat,
it is sometimes possible to correct a problem in one sector with a corresponding
adjustment in another sector. 

Here’s a pedestrian example: I used icons overmuch in one of my designs. I
realized that the icons had become too complicated for a user to comprehend
easily. This was a serious problem with my talking language. I solved it by shift-
ing the problem into the listening sector: I added a feature that popped up a
short translation of the icon’s meaning if the user held down the button over
the icon for longer than a second. This was back in 1987, but the idea was so
good that it is now standard (and called tooltips) in a great many programs, but
with a big improvement: the requirement of the mouse click has been elimi-
nated. If the cursor hovers over an icon for more than a few seconds, a quick
pop-up microwindow provides a phrase of descriptive information.

Here’s a more practical example: Suppose that you’re designing a gargan-
tuan website and are deeply concerned about the number of steps users are
required to take to navigate through the morass. You might be able to apply
some more thinking to reduce the difficulties your listening part faces. For
example, perhaps you could ask your user for a keyword or two that might help
zero in on the destination. A search facility takes more thinking than a simple
linked tree. It might also be possible to analyze the user’s previous history in
navigating the tree to divine his likely next goal. If he always goes to the price
page for a product before the sales pitch page, perhaps you should take him to
the price page automatically, or even present lists of prices for any product class
he seems interested in. In all of these cases, you are correcting a problem in the
listening phase through the expenditure of more thinking resources.

The one phase that cannot be saved by extra work on the others is the
thinking phase. The algorithms, after all, are the meat of the product, the deliv-
ered content that makes it valuable to the user. If you don’t have enough meat
to offer, dressing it up in a snazzy bun won’t help matters.

Don’t Set Up False Expectations

Featuritis is the uncontrollable urge to slap too many features onto a design. All
beginning designers suffer from featuritis, and some never shake the disease.
The reasoning is usually “if one feature is good, then ten must be better!” Some
of the blame for this stupidity must be placed on those marketing people who
perceive competitive marketing as trench warfare with features—God favors the
side with the bigger bullet lists. Additional features are never unalloyed benefits;

6490 AID Chapter 8  11/4/02  11:34 AM  Page 106



Guidelines 107

every new feature interacts with all the other features in complicated ways. The
feature interaction inside the program is bad enough—programmers will tell you
how often a stable program can blow sky high with the addition of just one little
improvement. 

Here’s a simple example of what I mean. I was designing the Erasmatron, a
big, complicated program. There was one variable that showed up in many
places in the program. I had originally intended the variable to be defined and
modified at a single place in the program. But my tester pointed out that she
was constantly modifying this variable, and bouncing back and forth from her
workplace to the editing place was a pain in the butt, so I dutifully arranged to
make the variable editable anywhere in the program. All seemed well until
months later, when somebody chose to edit the variable at a particularly obscure
and unexpected location in the program. The variable changed, but a control
on the displayed window affected by its value didn’t change along with it. This in
turn led to the program’s crashing when the user accessed that un-updated
item. Correcting the problem turned out to be a huge headache.

Of course, in this case, I wasn’t adding a new feature but correcting a
design mistake I had made earlier, so don’t shed any tears for me. But remem-
ber that little changes can often trigger big problems.

But there’s another, even more dangerous place where features interact:
inside your user’s mind. Every feature you add creates expectations in the user’s
mind. Those expectations might not seem logical to you, but then, you have the
entire design inside your head. Your user has a weaker grasp of the design’s
intricacies; the crucial truth that would disabuse her of an illogical expectation
might not be known to her. Thus, you must always be careful to consider all the
possible expectations a new feature might engender in your user’s mind. A fea-
ture that sets up false expectations will justly earn your user’s ire.

There aren’t any examples from the world of real software that I can draw
your attention to, because these problems are always caught in testing. Here’s a
hypothetical example: Suppose that you’re designing a word processor and are
tackling the footer facility. You figure that editing a footer is just like editing any
other text, so you set up the footer editor to be a special case of normal text
editing, with all the usual gewgaws such as variable font sizes, margins, para-
graph styles, and so forth. How clever of you! And then one day one of your
users decides to enter a page break inside a footer. What happens? Well, a page
break requires a new page, which in turn requires another footer, which inserts
a new page, which requires a new footer. . . . Oops!

Remember that all features interact, both inside the program and inside
your user’s head. As your program grows, the number of interactions increases
geometrically. 

Say What You Mean

Back in the bad old days, we were stuck with little tiny screen displays that couldn’t
hold much information. We learned to conserve screen space. One of our most
useful tricks was compressing textual messages. This often took the frm of cntrctns,
but we also learned cntrct sntcs. Worked. Saved space. More done. Happy.

6490 AID Chapter 8  11/4/02  11:34 AM  Page 107



108 Chapter 8

Nowadays, the pressure for screen space has decreased a bit. Our screens
are bigger, and we have learned new tricks for squeezing more function out of
available screen space, such as pop-up devices. But old habits stick to our boots
like donkey doo, and we stubbornly retain the habits of yesteryear. Whenever we
close a document, we are asked if we want to save it. Some programs ask, “Save
changes to filename before closing?” and give us the choice of Yes, No, or
Cancel. This dialog is unnecessarily terse. The subject of the verb Save is not
specified; this creates a tiny confusion over who is to do the saving. Is the user
expected to do additional work to effect the saving process, or is the computer
asking whether it should perform that labor? Most of us, long experienced in
the ways of computers, already know the answer to that question, but to a neo-
phyte, the question requires some additional effort to understand, effort that
would be unnecessary if the designer had bothered to say, “Should I save the
changes to filename before closing?” Most old pros will dismiss this as nitpicking,
but hell, I cld sv a few cnts wrth ppr by elmntng rdndnt lttrs frm my wrtng, & it
tks U jst lttl mr wrk 2 fgr out, rgt? How much work are you willing to do to
ensure that your user gets your message clearly?

A second problem with the cited wording is that the choices available to the
user are not nailed down as solidly as they could be. Letting the user choose Yes
or No requires him to go through the additional mental step of relating the
answer to the question. The response would be clearer if the buttons read “Save
these changes” and “Don’t save these changes.” 

While each individual manifestation of this problem is itself quite petty in
impact, the overall effect of ubiquitous excessive succinctness surely slows down
a user. The problem may be small, but the solution is smaller still. So just fix it!

Speak with One Voice in Five Tones

Back in the good old days when dialog boxes first came out, we ancients all
thought they were the bee’s knees. Of course, there might be only a dozen such
dialog boxes in a typical design back then. Nowadays, most applications have at
least a hundred. Some are big; some are small. Some are colored; some aren’t.
Some are centered on the screen; others appear in the upper-left corner. Some
are big boxes with tabbed interiors; others are cute little things with a single but-
ton. Some are modal; some are nonmodal. It’s a hodgepodge. 

Remember: whenever a technology expands, it changes in ways that often
require a qualitative change in approach. Such is the case with all those dialog
boxes. This chattering tribe of dialog boxes has become cacophonous; it’s time
to bring some order to the chaos.

All screen windows can be fit into five simple categories.

Primary Data Windows
These are the main windows of the application, the places in which the user
spends most of her time. They hold the information that the user is most inter-
ested in. In a browser, it’s the page display window; in a word processor, it’s the
window containing the user’s text. This is the primary window around which all
the other windows, dialog boxes, and alerts orbit.

6490 AID Chapter 8  11/4/02  11:34 AM  Page 108



Guidelines 109

Progress Reports
These contain progress bars and other messages informing the user of ongoing
events. Some applications provide this information in a little bar at the bottom
of the screen (for example, “Contacting www.erasmatazz.com”). Others put it in
a special progress box that shows a progress bar with an estimate of how much
time remains in the process. Another variation on this basic class is the initializ-
ing splash screen, which often shows, in fine print at the bottom, what program
modules are being loaded and initialized.

“I Screwed Up”
This is my term for a variety of dialog boxes describing error conditions.
Remember that the customer is always right; he cannot make an error. If an
error arises, the only person to take the blame is you. Therefore, every error
condition is really the result of a programming or design error and should be
presented as such. Tell the user exactly how the program failed and what can be
done about it. If possible, give the user a choice of recovery strategies, but don’t
paralyze him with an overly technical choice. If you have a division-by-zero error,
don’t give the user the option to proceed with the calculation using the highest
value supported by the word size; most people won’t have any idea of the impli-
cations of such a decision. If the decision is too tricky to make, then make the
safest decision for the user, advise him of the damage done, and urge him to
save the document and examine it closely. And tell him where to look for prob-
lems! Your software can’t recognize an error without also recognizing its loca-
tion in the user’s work, so go to the small extra effort to specify that location.

“I Can’t Handle That”
These replace the rude “Too many farburgles” messages that maculate so many
programs. There will always be situations where the user attempts something
beyond the specifications of your design. Telling her that she has violated the
design specs is not the way to win a customer’s heart. When the user wants to
do more than you can do, tell her so. Explain the limitation. Suggest
workarounds. Request that the user notify you of her experience; if she has
bumped her head against this ceiling, you want to know about it so that you can
raise the ceiling on the next release of the software. 

“I Need More Information”
All programs have plenty of these types of message. Some are the standard
information-requesting dialog boxes such as “File name to save document
under?” or “How many copies to print?” They also replace all those rude error
messages that tell the user that he has failed to establish some item of context
needed to carry out the command. Instead of impugning the user’s competence
with a message like, “You haven’t selected a printer to print with.” it’s better to
announce, “I need more information to carry out your command: on which
printer should I print this document?”

These five fundamental message types can handle just about every situation
you encounter with your user. Here is how I implemented the latter four:

6490 AID Chapter 8  11/4/02  11:34 AM  Page 109



110 Chapter 8

The uniformity of style is an important attribute of this approach. Each
message window has a unique color and a standard title. Each has a face on the
left side; in the final implementation, that face communicates the emotional
tone of the message. This instantly communicates to the user the expectation
placed on him:

6490 AID Chapter 8  11/4/02  11:34 AM  Page 110



Guidelines 111

I need more information: The user must answer a few questions or fill in some
text.

I can’t handle that: The user must scale down his expectations of the program.

Progress report: The user should wait or should cancel the action in progress.

I screwed up: The user is in trouble, but it’s not his fault and there’s little he
can do.

Don’t Describe the Problem—Offer the Solution

One dark day I encountered this error message:

This message is presented upon opening a word processing document. It
describes the problem quite clearly, but it doesn’t give any inkling as to how
I might correct it. It seems to suggest that I could solve the problem by
installing the “Long Island” font in my System file—but what if I don’t have that
font? What I need is to locate the text that uses that font and change it to
another font—but the program doesn’t give any hint as to how I might accom-
plish that, eliciting from me a plethora of erudite imprecations.

Here’s another example of a truly idiotic error message:

OK, Software Designer; so you couldn’t find a file you needed. I’d be glad
to try to find it in my archives somewhere, if only you’d tell me what it is. But
no! You prefer to bitch and moan without doing anything constructive. And
then you ask me to dismiss it by saying OK. It is not OK!

It’s acceptable to explain to the user the nature of the problem, but that is
secondary information. The whole point and purpose of any communication
with the user should be to advance her efforts. These should both have been
treated as “I screwed up” messages; the designer erred in making the program’s

6490 AID Chapter 8  11/4/02  11:34 AM  Page 111



112 Chapter 8

function dependent on fonts or files that might not be present and then not pro-
viding automatic recovery. The first message should then have looked like this:

This is how the second message should have looked:

Isn’t this a much better approach?

Design the verbs first. Be on guard against the egotistical tendency to speak. Keep it
fast. Organize options in manageable groups. Prioritize options by frequency of use. Be
square. Design the loop as a whole. Don’t set up false expectations. Say what you
mean. Speak with one voice in five tones. Don’t describe the problem—offer the solution.

6490 AID Chapter 8  11/4/02  11:34 AM  Page 112



9
A N T H R O P O M O R P H I Z A T I O N

The time has come for software designers to accept the
necessity of anthropomorphization. While the means to

execute anthropomorphization may be marginally ade-
quate, the complexity of software demands it, and the immi-

nent arrival of voice technology adds urgency to the demand. 

With Whom Does the User Interact?

Anthropomorphizing computers has always been a sure source of amusement.
Remember the old Star Trek episodes where Captain Kirk talked his way out of
computer- induced jams by confusing the computer with logical conundrums
that caused it to spew smoke out its ears and break down? Nowadays, we’re not
so scared of computers, and many professionals look askance at anthropomor-
phizing them—it invests them with hidden powers that they don’t possess. It’s
not a person; it’s just a machine acting out its algorithms. Talking to it as if it
were a person implies that the speaker doesn’t understand those simple-minded
algorithms and is therefore a worthless, disgusting beginner. The better people
don’t talk that way.

6490 AID Chapter 9  10/18/02  4:30 PM  Page 113



114 Chapter 9

I’d like to turn the tables on those people who reject anthropormorphiza-
tion by suggesting that they are doing the reverse: objectifying what is innately a
human interaction. The person using your software is interacting with you, not
the computer. Consider, for example, just whom you converse with on the tele-
phone. Strictly speaking, you’re not talking with another human being; you are
speaking to a microphone and listening to a speaker, machines both. Those
machines are in turn communicating by means of complex digital algorithms
with some machines that your interlocutor is speaking and listening to. Yet,
while the interaction may technically be carried out with machines, we all recog-
nize the deeper truth that we are, in fact, interacting with another person when
we use the telephone. 

The same principle is at work when we use a computer. The only substantial
difference between the telephone conversation and the computer interaction is
the level of abstraction in the communication. The software designer does not
provide the specifics of the interaction, but the rules under which those
specifics are determined. The fact of abstraction does not alter the underlying
reality: the user is interacting with the designer.

If you are confused by this notion that abstraction doesn’t alter then sub-
stance of the interaction, consider the following analogy. Suppose that you live
in a dictatorship that has outlawed, say, the playing of computer games. One day
the police burst into your home and catch you playing a computer game. They
drag you off to jail. Whom do you blame: the police who actually put you in jail,
or the dictator who made the rules under which you were dragged off to jail?

Recognizing your true role as designer makes it easier to visualize the
nature of your relationship with your user. You are imprisoned inside the com-
puter, unable to see or hear her. You can hear only her keystrokes and mouse
clicks; you can speak to her only by means of video images and sound effects.
Much cleverness will be required for you to carry out a successful interaction
with your user. Just don’t ever forget: the user is interacting with your algo-
rithms, your ideas—with you.

Every Day, In Every Way, Ever More Human

There can be no question that, at some point in the future, we will talk to com-
puters as if they were human, so we might as well get started on the problem
now. Indeed, the rapid development of voice technology—both voice recognition
and voice synthesis—will soon force our hands. The entire collective experience
of the human race does not include a single instance of a person talking success-
fully with a machine. We talk to people, and only to people, and when we do
start talking to our machines, it will be impossible to outgrow the feeling that
we’re talking to another person. Moreover, the brutal truth is that software has
already become too complicated for most people to understand. Those “simple
algorithms” aren’t so simple anymore, and we need to give our users some sort
of mental model they can grasp in wrestling with our software. Since our users
happen to understand human behavior rather well, we should use what they can
understand, not what is convenient to us. The current term we use for this strat-
egy is agent. A bit of comic software history communicates the idea: 

6490 AID Chapter 9  10/18/02  4:30 PM  Page 114



Anthropomorphization 115

Agents are souped-up help systems dressed up to look and act like people.
Most designers recognize that this puts a more human face on the computer’s
interface. But the true benefit of the agent is not the appearance, but the
metaphor. Use of an agent implies a human mode of communication. We
expect to talk to machines by pushing buttons or turning dials. We expect them
to be stupid. The term agent, however, suggests that we can talk to this entity by
normal human means. This expectation feeds back to the designer, who realizes
that the conventions of machine interaction—buttons, dials, and the like—must
be jettisoned for human conventions: talking, listening, and thinking. This much
is good. The problem is, how far should we go in this process of anthropomor-
phizing our interface?

The design problems of anthropomorphization should give any competent
designer the willies. The truth is, we are nowhere near smart enough to create
any decent semblance of a person in software. Any human face we put on our
software will surely be a fake, a mask that could all too easily slip off, revealing
the true nature of the software in all its ugliness. We won’t get away with saying,
“Pay no attention to the machine behind the curtain!” The customers will see
through our pretension, and that can only hurt our relationship with them.

My solution may seem insanely contradictory: pseudo-anthropomorphiza-
tion. We present our users with “characters” possessing some small degree of
humanity, but the characters are represented by imagery that clearly communi-
cates the limited nature of that personality. The worst possible approach was
taken by Apple some years ago when it presented a vision of the future show-
ing an agent popping up in the corner of the screen, offering help to the user.
The agent was represented by video clips of a real human being speaking in
normal, full-featured English. This probably is close to what we’ll have in the
future—the far future. For the present, we have to live with agents that are
dumber than a doornail.

System crash          Error message       Help system            Agent

6490 AID Chapter 9  10/18/02  4:31 PM  Page 115



116 Chapter 9

This approach backfires badly when the speaking part of the agent is much
better developed than the listening and thinking parts. Hearken back to Chapter
8, with its warnings about not concentrating on the speaking part. Most agents
these days do little more than talk at the user. A little head pops up and
announces, “Hi! I’m Agnes, your agent! I’m here to make things so much easier
for you! Just listen carefully, and I’ll tell you what to do.” At which point, we get
a talking version of the user manual. Whoop-de-doo.

If you’re going to create an agent, then by God, create an agent—not a mul-
timedia user manual. Endow it with ears and a brain! If you can give it only tri-
cycle ears and a tricycle brain, then don’t give it a Formula One face and
turbocharged talking. A user who sees and hears a normal human being on the
screen has every right to expect that it can listen and think like a normal human
being, an expectation that turns out to be false. In other words, all that snazzy
facial animation and voice synthesis only serves to set up false expectations if it
isn’t backed up with equally snazzy listening and thinking. 

If your agent’s listening and thinking are lousy, then use a stick man squeak-
ing in a cartoonish voice. Better yet, emphasize his stupidity by using text
instead of voice synthesis, and write the text in third-grade English. Microsoft
was on the right track using a paper clip as an agent; the highly cartoonish
nature of the image suggests the low level of intelligence in the agent.
Unfortunately, the level of intelligence that they gave Mr. Clippie is even lower
than what we would expect of a talking paperclip, so the end result is still dis-
pleasing to many users. 

Use First and Second Person and Active Voice

I don’t know why technical people insist on using third person and passive voice
in their writing; it’s so dehumanizing. Perhaps it’s because some of them are
self-dehumanized. In any case, 9 out of 10 experts agree: passive voice sucks,
and third person is weak. Although these admonitions are given for writing,
they apply just as forcefully to software. When you need to tell your user some-
thing, you should use first person for the program and second person for the
user. Don’t say, “File not found”; say “I can’t find that file.” Don’t say, “Number
out of range”; say “The number you typed in is too big to use here.” (Actually, it
would be better to use a scrollbar in this case and prevent the problem from
arising in the first place.)

Be Just as Courteous as You Would Be in Public

Actually, this admonition to be courteous applies only if you’re a normal human
being. If you’re one of those troglodytes who sleeps on a cot in your office, then
perhaps you should be as courteous as someone else would be. In any case, soft-
ware these days is just plain rude. Imagine an interchange with a waiter operat-
ing under software rules of courtesy:

6490 AID Chapter 9  10/18/02  4:31 PM  Page 116



Anthropomorphization 117

You: Good evening, garcon!
Waiter: [Silence]

You: So, um, is the salmon fresh tonight?
Waiter: Salmon Capture Time = 16:33 8/11/00.

You: Okay, I suppose that I’ll go with the salmon; but could I have a half-
serving?

Waiter: Invalid number.

You: Very well; then I’ll have the sirloin steak.
Waiter: Select one: mashed potatoes, rice.

You: Could I get some french fries instead?
Waiter: Select one: mashed potatoes, rice.

You All right then; I’ll have neither!
Waiter: Select one: mashed potatoes, rice.

You Okay, okay; I’ll take the mashed potatoes! Could I get some rosé wine
with that?

Waiter: [Walks away]

You: Waiter? Waiter?
Waiter: [Returns] Wine not found.

I ask you, how large a tip would you leave for this waiter? Aren’t you glad
that software designers don’t depend on tips for a living?

And it certainly wouldn’t hurt to say “Please” and “Thank you.” If a four-
year-old can learn to do so, why can’t a $500 program?

Use Normal English, Not Your Own Terminology

How many times has a program given you a message referring to something you
never heard of? This can sometimes be unavoidable, as when a word processor
takes pains to tell you about a problem with a section instead of a paragraph (and
you don’t know the difference). But dialog boxes these days are plagued with far
too much techie talk and not enough plain English. And, as I warned in Chapter
8, try to avoid overly terse messages.

Don’t Feign Infallibility

Have you ever encountered a software error message that apologized for—or even
admitted—a mistake? Software is always quick to tell you what you did wrong, but
it never seems to admit the possibility that it did anything wrong. In the real
world, a person who always blames everybody else and never accepts responsibil-
ity for his own mistakes is quickly ostracized. But I have never seen a program big
enough to admit that it made a mistake. And that certainly isn’t because software
is infallible. At any given moment, the publisher of any popular program will
have a list of error reports containing hundreds, if not thousands, of errors. If
software isn’t fallible, how come you almost never see a version 5.0.0 of anything?
It’s always 5.0.3 or 5.1.7. Everybody who uses computers knows full well just how
fallible they are. So how come nobody ever admits it? 

6490 AID Chapter 9  10/18/02  4:31 PM  Page 117



118 Chapter 9

Some programmers will claim that, as soon as they know the problem, they
fix it. If they can recognize the problem, why waste time putting in apologies—it’s
better to just fix it. I suppose that there are some young programmers who actu-
ally believe this nonsense, but no old salt will stand behind such claims. Any rea-
sonably interesting piece of software is chock full of bugs and problems; by the
time a program has been cleaned up to the point of being truly bug free, it is
most certainly obsolete. Indeed, programmers themselves recognize the fallibility
of their work whenever they place an assert statement into their code. This state-
ment declares something that the programmer expects to be true, and if it turns
out not to be the case, the program can tell the programmer about the problem
instead of crashing. Any place in the code that has an assert statement should
also have an apologetic message to the user. The “I Screwed Up” and “I Can’t
Handle That” standard messages presented in Chapter 8 are ideal for this task.

Conclusion

It may be true that the “better” people don’t anthropomorphize their comput-
ers, but normal people do. My wife uses AOL (a product for people who are
normal, not better), and whenever she signs off, it says, “Goodbye,” and like any
normal person, she reciprocates with a “Goodbye” of her own. My neighbor
with a Ph.D. in electrical engineering talks to his computer in the second per-
son, especially when it doesn’t do what he wants it to do. Incorrect it may be,
even stupid—but it’s what your users are doing, so you might as well use this
behavior to your advantage rather than resist it. And if you refuse to be swayed
by the ignorant superstitions of the rabble, here’s the clinching argument: they
do it on Star Trek.

Anthropomorphization raises many new and difficult issues, but the first steps in that
direction are simple and obvious: use first and second person and active voice, be just
as courteous as you would be in public, use normal English, and don’t feign
infallibility.

6490 AID Chapter 9  10/18/02  4:31 PM  Page 118



10 
B L O O P E R S

There are as many ways to screw up interactivity
design as there are designers. Herewith some howlers.

I’m going to have some good mudslinging fun in this chapter. I’ll
unleash my inner asshole and vent spleen on design blunders. In the

process, I’m sure you’ll cheer as I demolish the bane of your digital existence,
and gnash your teeth as I gore your favorite sacred ox.

Overloaded Web Pages

Let’s start with an obvious clunker: web pages that take too long to download.
This is a direct violation of the admonition in the previous chapter to “Keep it
fast.” Most website designers have long since learned that overloaded pages
chase away users, but many of their clients have not. All too often the client
demands snazzy graphics, and the designer, after advising against it, acquiesces. 

One good compromise arises from the fact that most websites are designed
as tree structures. You can make every effort to push the images further down
the structure, as far away from the trunk as you can. Thus, the pages that are
merely middlemen between the index page and the various information delivery
pages can be reduced to simple, fast layouts. The client still gets the satisfaction
of knowing that those glorious images showing the product in 16 million colors
will still be included—and the user spends less time sitting around waiting.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 119



120 Chapter 10

Video

We have now established beyond all doubt that we can play back video on a
computer screen. Whoop-de-doo! Now the question is, so what? Video is anti-
interactive; while it’s playing, the user is necessarily sitting on his butt, doing
nothing. True, video is always stimulating, and it sometimes perks up a dull
topic—but we’re designing interaction, not video. If your goal is to smear lots of
information all over your user’s face, you can accomplish this task much better
with plain old noncomputer video. Make a videotape! Why should a user drum
his fingers while umpty-zillion bytes amounting to a snippet of video dribble
down the wire into his computer? In the time it takes to download some of the
video on the web, a user can walk to the nearest fast food joint, flip burgers for
long enough to earn a few bucks, walk to the video store, use the money earned
to rent a videotape with two hours of full-screen, full-motion video, and walk
home. That videotape will present him with a video experience superior to any-
thing he can download from the Web. So why do designers waste so much time
and money doing video badly when they could be doing interactivity well?

Perhaps you object that the current generation is a TV generation; it was
raised on video, it lives, breathes, and thinks video. This is all true, but interac-
tivity is a new medium, just as video was once a new medium. The old fuddy-
duddies exerted a braking influence on the maturation of video, but the kids
embraced the new form and propelled it forward. Now it’s video’s turn; the
video fuddy-duddies are trying to hold back interactivity by treating it as just a
computerized form of video. To the barricades, citizens!

Stupid Thinking

I was using ScanDisk this morning to check my hard drive. It found a tiny prob-
lem with a file: its name was too long to be used in DOS. Since I have no interest
whatever in raising DOS from the grave to terrorize the world again, I don’t care
about this problem and told the computer to ignore it. So ScanDisk went off to
look at other files and—lo!—it found another file with the same problem. I again
told it to ignore the problem. Then came another, and another, and another,
until I was reduced to hitting the Enter key frantically, hoping to Gates that there
weren’t three thousand such files on my hard drive. I was lucky; it took only
about a hundred keystrokes. Unfortunately, the last keystroke dismissed the final
dialog box telling me the results of the test, so I don’t know if ScanDisk approved
of my hard drive. I’m sure not going to try that program again!

This is an example of stupid thinking. The designer of the program decided
that, if a problem arises, the user should be notified and given a choice as to how
to handle it. However, the designer failed to think deeply enough about the prob-
lem: what if there are more than a score of instances of a minor problem, all of
them to be dealt with in the same way? Clearly, if a human being had asked me
ten times about whether I wanted the same minor correction made, I would
interrupt him on the tenth query with an angry order to ignore all of the damn
things. And it’s not as if the computer doesn’t have enough native intelligence to
count. That designer could easily have added some common-sense algorithms
that allow a user to short-circuit this kind of nonsense, but he never bothered.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 120



Bloopers 121

Here’s an older example from the Macintosh world: the designers of the
Macintosh operating system equipped it with a highly intelligent system for man-
aging big programs. This Memory Manager was even smart enough to know
that some resources were not in memory, but stored on a hard disk or a floppy
disk. And it was even smart enough to recognize the absence of the required
floppy disk, eject the currently inserted floppy, and request the required floppy.
That’s impressive! Unfortunately, the design had a fatal flaw. In many cases, a
program would require resources from both the system file and the application
file. The system file resided on the system floppy, and the application file
resided on the application floppy. Thus, when you started a program, you might
be confronted with a long sequence of disk- insertion requests. “Now I want the
system disk,” “Now I want the application disk,” “Now I want the system disk.” I
once counted the number of swaps I carried out in this notorious floppy shuf-
fle; it came to 65 disk insertions. That was stupid. Some additional thought on
the part of the designer would have created some algorithms to either group all
the resource acquisition together or warn me of what I was getting myself into.

Secret Icons

Some designers go nuts with icons, scattering them about like dandelions. I have
here a collection of icons lifted from a variety of programs. I don’t know what
any of these icons mean, so I have provided my own interpretations:

I can’t figure this out. Is that a clothespin holding a scrap of paper?

A video snippet?

This is obviously important. Something is going somewhere. What and where, I cannot
guess.

Keep your eye on this folder?

Duck? Should I migrate? Are you telling me I’m a quack?

Learn your ABCs? Swirl letters around? Superimpose letters?

Aha! I recognize this! It’s an Apple II!

Uh-oh. There’s no such thing as an Apple I . . . .

6490 AID Chapter 10  10/21/02  12:53 PM  Page 121



122 Chapter 10

This shows just how arbitrary icons can be. All three of these icons mean
the same thing: they refer to program plug-ins.

This is bad! Use of a visually nonsensical image suggests that the function is
nonsensical. Who wants to use something that’s nonsensical?

Last, we have an exercise in absurdity: the text icons. For some reason, the
designer could not bear to simply use a label; that would have been too obvious.
No; to be high-tech, the function had to have an icon. So the designer simply
wrote the text inside the icon:

Some people defend icons by pointing out that they make more sense in
color, and in fact most icons are easier to understand when rendered in color. I
chose these icons because they’re just as ridiculous in color as they are in black
and white. Other people argue that icons should be considered only in the con-
text in which they are used, and that many do, in fact, make more sense in con-
text. But this is a circular argument: once you know what everything means,
then you know what the icon means. So how do you learn what things mean in
the first place? Does this line of argument boil down to RTFM? Moreover, invok-
ing context as a defense doesn’t change the fact that the icon is intrinsically con-
fusing. Read, for example, this sentence:

“Fredegund’s sensational test score made her daktylodeiktous all over cam-
pus, but not beyond its walls.”

The context of this sentence helps you understand the word “daktylodeik-
tous,” but does that make my use of the word appropriate or useful?

Alan Cooper, in his daktylodeiktous-worthy book About Face, argues that
icons used inside programs really need not make much sense; they are meaning-
less markers whose only function is to spatially locate a particular function. He
therefore recommends that designers use icons frequently, so long as they are
for experienced users only, as shorthand for commands that the users have
already learned from the menus.

I have reservations about his argument. The first writing systems worked in
the same fashion: there was a custom icon for each word, and the scribe had to
know all the icons in the system in order to read and write. Inasmuch as the
writing systems used several thousand icons, the entire system took several years
to learn, and only a very few people learned to read and write. I checked six
widely used applications and found that, all together, they sported 424 icons. Do
you think that the average user can memorize the meanings of 424 icons?

Icons work well when they are either (a) visually suggestive or (b) few in
number. None of the six applications I checked meet these criteria. So enough
with the icons, already!

6490 AID Chapter 10  10/21/02  12:53 PM  Page 122



Bloopers 123

Delayed Response

Desperately seeking new ways to listen to their users using existing hardware,
designers have often resorted to using delays as part of the input scheme. The
length of time that a button is pushed down—or not pushed down—becomes a
new word in its own right. For example, pushing the button for a fraction of a
second means one command, but pushing and holding it down for several sec-
onds means another command.

This is a very bad idea, for two reasons. First, there is absolutely no way that
a user can guess this behavior. Nothing can be done to suggest it to the user. It
can only be explained through the manual, and even then, it is almost impossible
to remember. If the user has four buttons to push, how can she possibly recall
which button performs which function when held down for an extended time?
The clock radio on my (American-designed) car requires that one of its 13 but-
tons be held down for three seconds to set the clock; consequently, we never set
the clock, even in response to the coming and going of Daylight Savings Time.
It’s easier to remember that the clock never reflects Daylight Savings Time.

The second flaw in this concept is that it defers response until after the but-
ton is released. When you first press down the button, the software doesn’t
know whether this will be a quick-click or a long-click, so it cannot take any
action at all. It must wait until you release the button before it can decide what
action to take. Therefore, when you first press the button, nothing happens—
suggesting to you that perhaps the system is broken, or you didn’t press hard
enough, or that something else is wrong. You will likely respond to the apparent
failure in a manner that sabotages the entire interaction. 

Another form of delayed response is less objectionable: delayed response to
inaction. This is the method used for tooltips. You simply leave the mouse
motionless over an icon, and the tooltip pops up. This still suffers from both of
the preceding flaws, but not so obnoxiously. Tooltips have now become so com-
mon that most people understand how they work. Still, the whole point of a
tooltip is to help the beginner; how can we assume that the beginner already
knows such a hidden feature?

Although the time delay used in presenting tooltips is unobjectionable, they
do raise a more fundamental problem: in many cases, tooltips appear despite
the user’s never having asked for them. For example, AppleWorks has a stan-
dard toolbar on the left side of the screen; clicking an icon in the toolbar acti-
vates the indicated graphic tool. Unfortunately, leaving the mouse stationary
over an icon triggers, after a one-second delay, the appearance of a help bubble.
(You will recall that a help bubble is a larger, more verbose version of a tooltip.)
Worse, the appearance of this help bubble is accompanied by a distracting cute
sound effect rather like a smoochy kiss. I will not claim that it is impossible to
disable this feature, but I certainly have been unable to discover how to do so. 

6490 AID Chapter 10  10/21/02  12:53 PM  Page 123



124 Chapter 10

This raises an interesting design problem. The tooltip is less objectionable
when it appears uninvited, because it is tiny and quiet. Of course, its small size
ensures that its overly terse explanation achieves little by way of explanation.
The help bubble, on the other hand, provides space for a much more satisfying
explanation, but its uninvited appearance is more obtrusive. How can we find a
reasonable compromise between these competing problems? My answer is that
the true problem lies in the fact that both features are uninvited in the first
place. The user should get help only when she asks for it. The means for doing
so should be the right mouse button, which is as yet underutilized. As I suggest
elsewhere, the left button should handle user commands, and the right button
should express user requests for information. 

Habituation Violation

In Chapter 4, I wrote rapturously of the mouse as an input device with its own
interactive loop nested inside the larger interactive loop of the application. I did
not address the many demands arising from the tightness of this loop. This is
not a primary concern for most interactivity designers, who will piggyback on
whatever mouse arrangement is resident in the computer they design for.
However, we must all be aware of the delicate ecology of the mouse–user inter-
action. To be successful, this interaction must insinuate itself into the lower
regions of the user’s brain. If the user must consciously move the mouse, calcu-
lating the motions in advance, then the interface loses its speed and fluidity.
Mouse control at its best is an unconscious process for the user. Consequential
to this is a certain user inflexibility with respect to mouse control. Our con-
scious processing can easily change in response to different circumstances, but
unconscious processing is not so plastic. For example, all shoelace knots have a
direction; some people make clockwise knots and some people make counter-
clockwise knots. I double-dog dare you to try to lace your shoes in the direction
opposite to your normal pattern. I guarantee that you will be reduced to sputter-
ing incompetence, unable to earn that monument of educational achievement,
the I-can-tie-my-own-shoes silver star.

My own experience with this is in the use of the mouse in Windows 98. I
am a long-time Macintosh user, and try as I may, I simply can’t get that mouse to
work right. I have fiddled with the adjustments for speed and acceleration, and
no matter what combination I try, it just doesn’t feel right. Consequently, my
every interaction with my Windows machine is soured by the low-level irritation
of a balky mouse. After an hour’s work, I find an excuse to desist, and I’m
cranky for the next few hours. I have developed a gut-level aversion to all things
Microsoft, and it’s all due to that damn mouse interface being “different.”

The serious point for interactivity designers is that we must never underesti-
mate the intensity of commitment that our users hold for the more established
habits of their computing lives. Don’t ever—ever!—mess with the dynamics of the
user–mouse interaction. It doesn’t matter if your method is superior; you’re up
against instinct, not reason. Don’t push your luck.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 124



Bloopers 125

This rule applies to all the other conventional elements of user interface.
Don’t mess with radio buttons, pushbuttons, scrollbars, scroll boxes, or any of
the other standardized components of GUI user interfaces. 

It’s acceptable to experiment with augmentations of the standard compo-
nents. For example, in one of my designs, I spiffed up a standard scroll box. It pre-
sented a long list of items in alphabetical order. Therefore, along the right edge of
the scroll box, I placed a set of letters indicating where the scrollbar thumb should
be placed to jump directly to that portion of the list. It looks like this:

Now, I won’t claim this to be a leap forward in user interface design; I’m
not even sure that it’s a good idea. But my innovation doesn’t interfere with the
conventional use of the scroll box, so it’s a worthy experiment. If other design-
ers like it, they’ll copy it, and eventually it might become a standard. More likely,
it will disappear into the fog of history.

Changing Things behind My Back

I once got into a battle with a photo-retouching program. In preparing a photo
for printing, I clipped out a section of photo, scaled it up to full-page size, and
then printed it—but it came out of the printer smaller than a postage stamp.
Confused, I checked the size of the document; it had been changed behind my
back! As it happens, the program keeps track of three factors that affect the
image size: the image size in pixels, the scaling factor, and the resolution. The
printed image size is the product of all three of these factors. Thus, there’s an
intrinsic ambiguity that arises when the user changes a single value. Suppose,
for example, that I tell the program to double the image size. Does that mean
that it should double the size of the image in pixels (turn a 640h-by- 480v image
into 1280h-by-960v)? Or should the program print the same number of pixels at
a lower resolution (300 pixels per inch instead of 600 pixels per inch)? Both

6490 AID Chapter 10  10/21/02  12:53 PM  Page 125



126 Chapter 10

answers yield a final image that is twice as large physically, but they are quite dif-
ferent internally. If you read the documentation carefully, the distinction is
made clear—but how many people read the documentation that closely? The bet-
ter solution would have been to clearly show precisely what is meant in each of
the various image size manipulations. Instead, the designers assume that the
user understands their intentions and then adjust the image accordingly.

Another example: how many times have you gone to a menu and discovered
that it wasn’t what it used to be? There are three flavors of this treachery:
deleted menu items, reworded menu items, and inexplicably dimmed items. The
deleted items are the worst; you blink and ask yourself if your memory is defec-
tive. You browse through the other menus, certain that it is in there somewhere.
After triple-checking every menu, you consult the manual, where you eventually
find a reference to it, but the manual seems to think that the menu item is in
menu X, and when you look there, it isn’t! You glance over your shoulders, half
expecting to see some prankster or poltergeist watching you. After much confu-
sion, you throw up your hands and give up, deciding you’ll just have to work
around the problem. Half an hour later, while working on something completely
different, you bring up the mysterious menu, and to your astonishment, there’s
the ghostly menu item! What gives?!!?

The villain in this scenario is the well-meaning but ignorant designer who
desires to protect you from an overlong menu. The program is constantly shuf-
fling menus around to provide you with only those menu items that are appro-
priate to the circumstances of the moment. This requires the poor user to keep
track of not only where menu items are, but when they are. This is paternalism
warped into fascism.

A kindler, gentler version of this is the reworded menu item. In many cases,
the rewording is helpful; for example, a program I wrote alters menu text to
refer to precisely what has been selected: the standard Cut command becomes
Cut Role when a role is selected and Cut Verb when a verb is selected. Such clar-
ifying additions are always helpful. However, if the rewording changes the
nature of the command (for example, if Cut Verb became Paste Role), then the
result is just as confusing as the disappearing menu item.

Last, there’s the inexplicably dimmed menu item. This goof is universal in
software design; I have already presented its solution in Chapter 5. Don’t ever
dim a menu item without explaining to the user why you have done so.

These problems arise when the designer fails to establish clear responsibility
for some value or setting. It’s a basic rule in management that making two peo-
ple partially responsible for the same task is asking for trouble. They’ll step on
each other’s toes; one will incorrectly assume that the other is taking care of the
task; they’ll point fingers at each other when problems emerge. The same thing
happens in a program with poorly defined task responsibilities. In the photo-
retouching program referred to earlier, the responsibility for setting the various
parameters for the image size was split between the user and the program.
Sometimes I get to control it, and sometimes the program gets to control it.
This is stupid design. The default condition should always be a clear division of
responsibility.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 126



Bloopers 127

You can certainly take over responsibility for tedious, repetitive tasks—but
get the user’s (boss’s) authorization first! Employees who assume responsibilities
too minor for the boss’s attention are showing initiative, but if they arrogate
something that isn’t minor, they get called on the carpet. And the determination
of “minor” is not made by the employee (program); it is always made by the
boss (user). You need not require authorization for every single instance (see the
earlier discussion of ScanDisk); for a suitably concise set of instances, a single
authorization at the outset is sufficient.

That’s Not My Department

Then there are the designers who go to the opposite extreme: they break up the
design into independent fiefdoms unaware of each other. A drawing program
once baffled me by printing blank pages instead of my document. I figured
there was something wrong with the relationship between program and printer,
so I fiddled around with the Page Setup and Print settings, but to no avail. Out
of options, I gave up. But a few days later, I came across something in a com-
pletely different area of the program. It was in the Format Document menu
item, which raised a dialog box for specifying the height and width of the docu-
ment. I had specified the document to be two pages high by two pages wide, but
I had attempted to print the document at a size that required four pages high by
four pages wide to operate properly. The program became confused and
printed empty pages.

The designer’s mistake here was an egregiously strict segregation of func-
tions that are, in practice, closely related. Like the pig-headed bureaucrat who
smugly refuses to help you because “that’s not my department,” the designer
requires you to trudge from department to department, filling out all the forms
in the proper sequence. All I want to do is print a lousy document; does it take
an act of Congress?

The proper solution is to create user interface links between tasks that are
operationally linked. Every specification related to printing should appear in (or
be directly accessible from) a single location. Thus, the standard Print dialog
box should include a button that pops up the Page Setup box, and another but-
ton that pops up the Document Format box. In programming terms, such
changes are ridiculously simple to implement. The problem is not with the pro-
grammers; it’s with the designers.

Coelacanthous Messages

Oftentimes a programmer will insert various diagnostic messages into her pro-
gram to alert her to technical problems in the early stages. This is good pro-
gramming practice, a kind of early warning system for bugs before they actually
hit. Most of the time, the message will take the form of a small dialog box with a
short message presenting the problem in terms of its location in the code and
its precise nature: “RingObj:StepRing ziRing == miRing”; “Interp:PushValue
miStack < 0”; and so forth. So far, so good; the goof doesn’t arise until later in
the development cycle. Now the company is getting ready to ship the product,

6490 AID Chapter 10  10/21/02  12:53 PM  Page 127



128 Chapter 10

and the programmer figures that she might as well leave the diagnostic message
in place. After all, it can’t hurt, and it might help the Customer Service people
diagnose the problem if a user actually encounters the problem. However, the
project leader insists that it must be made “user friendly,” so the programmer
rewords the message: “Ring overlap” or “Local stack underflow.” That at least
explains the problem in human-readable terms. She figures that the user can
simply report the magic phrase to Customer Service, and a technician will take
it from there. Besides, the problem will never arise anyway—right?

This is idiocy! If the problem occurred often enough and unpredictably
enough to require a diagnostic message, then clearly the programmer does not
understand it well enough to be confident that it will never reappear. She fig-
ures that no fisherman will ever hook this coelacanth—it’s lost in the deep blue
sea. And of course, somebody always does.

This blooper cannot be shrugged off as one of the inevitabilities of soft-
ware. Bugs are inevitable: obfuscatory error messages aren’t. All programmer
diagnostics should be converted into the “I blew it” message form, with the
request, “Please call our bug report line at (800) ###-#### and tell the techni-
cian: ‘I have encountered the Ring Overlap Bug with a ring index of 27 and a
stack depth of 5.’ The technician will refer it to the programming staff for their
diagnostic efforts.”

Somewhere along the line, some suit will object that this constitutes an
admission of error, exposing the company to legal liabilities, etc., etc. Whoever
that person is, just ask him to put his objection in an email so that it can go into
the archives for use when somebody does sue the company for covering up
the problem.

An Extended Blooper

Most bloopers aren’t as obvious as those cited; they arise from a more general-
ized failure to communicate. While you can’t put your finger on any single
design failure, there’s no question that the overall interaction fails. To demon-
strate this, I carried out an experiment: I installed and attempted to use Adobe
Acrobat 4.0 on my Windows machine without reading any documentation. Of
course, this is not a proper test of the design of the product; it’s more like a
race across Baja California to test the durability of a car design. In one short,
brutal session, I busted rear-view mirrors, dented fenders, and overheated the
engine. Here is my record of the interaction, exactly as it occurred:

Chris Acrobat

<Insert CD into computer> Startup screen with some options.

I’ll read “Before you install.” Long, boring license agreement.

OK, I accept your terms. System requirements, installation hints.

Fine. Now install yourself. You must quit all other programs!

Sure, sure. Done. Which country are you in?

USA License agreement.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 128



Bloopers 129

Chris Acrobat

Sheesh, twice? OK, OK. How complete an installation do you want?

Normal size Enter your name, rank, and serial number.

Here they are, sir. Are you sure?

Yes, I’m sure. Here’s what I intend to install.

Understood?

Jawohl, mein Kapitan. Installing.... Here’s name, rank, and

serial number again. Are they correct?

Yep, just like last time you asked. Are you in USA, Europe, or somewhere else?

I’m still here in the USA. Now enter lots of personal information

about yourself. If you don’t want junk

mail, click here. Remember, we will use

your email address for spam.

No thanks. Cancel. You must enter your name and address, or

the registration process will not be

complete and the installation will be

aborted!

Ack! OK! OK! Do you want my No, but I want other personal information,

bank account numbers and and you acknowledge that I can use this 

passwords, too? information for whatever purpose I choose.

But, but, I don’t want ... Select means of registration: fax, email,

or US mail.

No! I won’t do it! Cancel! But you won’t get all our wonderful

services!

I don’t care! Are you sure? 

Yes, I’m sure! Cancel, cancel, cancel! Very well. Installation complete. Shall I 

restart the computer now?

I thought you were going <Diddle, diddle, diddle>

to abort... OK, go ahead.

Acrobat, Engage! Warp 9! <Diddle> Empty window with tool icons.

OK, Acrobat, let’s play! I want an empty No.

document I can play with. How do I do that?
Uh, gee, Acrobat, there’s no New Document
command in the menu. Perhaps I’m just stuck
in my old-fashioned ways. You’ve probably got
some spiffy new scheme that doesn’t require
New Document commands. OK, so let’s see if
we can find it.... I know you’re in there
somewhere, you sneaky little command. Are
you hiding in this menu?

(continued on next page)

6490 AID Chapter 10  10/21/02  12:53 PM  Page 129



130 Chapter 10

Perhaps you’re hidden in a secondary menu.... No.

Come out, come out, wherever you are! No.

Perhaps if I try a few commands that look
remotely like.…

OK, OK, I won’t be pigheaded about this. ReadMe.pdf.

Let’s just open up an existing PDF file and
modify it playfully. We’ll open up the first 
document we see.

How apropos! Open it! File displayed.

Uh, so how do I actually edit this thing? No.

Does this do anything?

Does this do anything? No.

Does this? No.

How about this? No.

Perhaps this file has been locked—I better File displayed.

find something else to play with. <Rummage,
rummage> Ah, here’s just the thing: a minor
PDF file. They wouldn’t bother locking this
file. Open it!

So, how do I edit? <Click text> <Dead, cold silence>

Maybe I need to Shift-click or something.... <Dead, cold silence>

Perhaps if I look under the Edit menu.... Nothing there.

Ah wait: those little icons running down the <Cursor changes to text insertion cursor>

side of the screen: they look kinda like editing
icons I’ve seen elsewhere. This one here has
a big capital T—that must mean “text.”
<Click it>

Now let’s click some text. <Selects entire word under cursor>

That’s odd; I would have expected you to <Cursor changes to targeting cursor>

simply insert a text cursor there. But it’s a start.
<Type some text>

What’s that mean? Am I supposed to select <Cursor changes to hand cursor>

some target point in the document? And why
did you unpress the icon button with the capital
T? Now you’ve pressed the icon button with
the hand holding a pen. Who’s running this
show, anyway? Still, this might be a good
sign—a hand holding a pen surely indicates 
some kind of writing. Let’s do it your way.
<Press some keys>

6490 AID Chapter 10  10/21/02  12:53 PM  Page 130



Bloopers 131

This is really weird! OK, let’s go back to <Selects word>

Square One. <Click capital T icon>
<Click word>

Good, at least you’re consistent. <Cursor changes to targeting cursor>

<Press one key>

More consistency! Huzzah! This time, New window: Select signature handler.

however, I’ll accept your invitation to select 
target. <Click empty spot on page>

What the hay-uhl?!?!? What’s a signature Tooltip: Text selection tool.

handler? I just want to type some text!
OK, let’s retrench here. Close the signature
window. Do you at least have any tooltips?
<Hover over an icon>

Good for you! Such a smart little program! I <Selects several lines of text>

bet you got a gold star in school for tying your
shoes properly. <Click and drag over text>

Now you’re talking sense! Now can I actually Nothing except copy.

do anything with this selected text? What’s
the Edit menu let me do?

That’s not very helpful. Let’s just try carefully <Cursor changes several times>

typing letters. <abcdefghij>

Aha! Now I get it! The keyboard isn’t for <Dead, cold silence>

typing—it’s for selecting cursors. I suppose
you expect me to enter text by prestidigitating
the mouse? OK, let’s run with that idea.
Perhaps you’re just too highfalutin a program
to dirty your hands with mere text entry.
You’ve got all sorts of powerful features, but
entering text isn’t one of them. OK, so let’s try
an experiment: I’ll just copy some text onto the
clipboard and paste it somewhere else.…

Back to the drawing board. Let’s try this here <Cursor changes to text insertion cursor>

“text annotation tool.” <Click icon>

Good. <Click page> <Text entry box with blinking text cursor>

Hallelujah! Quick, type something before it <Blue text>

changes! Yes, yes, it’s working! I’m seeing
text appear! It’s...it’s....

This is not the same as the regular text. Ah, I <Cursor changes>

see! It’s an annotation; it’s not real text. So 
how about this other text tool; it says it’s a 
“text touch-up tool.” <Click it>

Good. <Click some text> <Rectangle appears surrounding line of

text. Text insertion cursor appears

between two characters of the text.>

6490 AID Chapter 10  10/21/02  12:53 PM  Page 131



132 Chapter 10

I’m in business at last! <Type some text> You cannot edit text in this font.

What?!?!? Why not? I’m the boss here, and I <Dead, cold silence>

want to edit this text! So what do I have to do
to edit this text, Your Highness? Do I have to
change the font?

OK, let’s see what we can do. Do the cursor <Text cursor moves through the text.>

keys do anything? <Press cursor keys>

Great galloping gargoyles, I can feel the <Letters are deleted.>

power flowing through my fingers! Let’s
really try out some horsepower! <Press
Backspace key>

So here’s what we’ve got: you’ll let me destroy Text attributes: Font is Palatino-Roman.

characters, but I can’t enter them. This isn’t a
text editor, it’s a Text Terminator. What a
concept! Wait a minute, I think I recall
something from earlier. <Rummage,
rummage> Yes, here it is: a menu item called 
Touch-up. It has a secondary menu with an
item called Text Attributes. I wonder if that will
permit me to change the font. <Select
menu item>

Yes, indeed! And sure enough, here’s a pop-up Long list of fonts

menu showing the font in use. All I have to do
now is pick some other font from the pop-up 
menu, and I’m in business! What choices do
I have? <Click and hold on pop-up menu>

Hmm, this looks fun: Baskerville Old Face. Font is Palatino-Roman.

I’ll take it. <Release mouse button>

What?!!?! You didn’t change the font? Font is Palatino-Roman.

Maybe I screwed up. I’ll do it again.

You dirty, low-down program! Why did you Font is Palatino-Roman.

offer me a pop-up font menu if you won’t let
me change the font? Wait a minute! There’s
a little check box here that says Embed.
Mayhaps it’s blocking me. <Uncheck box>
Let’s change that font now!

Curses! Foiled again! Perhaps I’m being too Font is Palatino-Roman.

adventurous with my choice of fonts. Perhaps
I should try one of the most common fonts,
such as Times-Roman; perhaps that will work.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 132



Bloopers 133

Maybe I’m going about this all wrong. Changing the document: Allowed.

Maybe this document is locked, and I’m not
allowed to change the text. Of course, if that
were true, why was I able to delete
characters? Let’s just poke around and see if
there isn’t some sort of “Unlock this document”
command. <Rummage, rummage> Sure
enough, here’s a Document Info menu item
right in the File menu! <Select menu item>

Another dead end! <Rummage, rummage> <Rectangle moves horizontally.>

Gee, this is interesting: under the Tools menu,
there’s a menu item called Paper Capture.
I didn’t know that it was getting away. Looky,
it’s got a secondary menu: Show Capture
Suspects. Hoo-boy, this looks like powerful
software! And look: just under that, there’s a
menu item for Find Next Suspect. All it takes
is a Ctrl+H. Does the FBI know about this
program? Of course, you’d think that a
program that can find suspects would be 
smart enough to let you type some text, but 
apparently they didn’t have any room left for
text entry after they’d put in all those
powerful features.

I’m running out of ideas here. However, there <Rectangle moves off page and into empty

are two little diamonds on the corners of the window space.>

rectangle that surrounds the text. Maybe they
do something. <Click diamond and drag>
That sure is cute; I wonder what it’s for?
Let’s have some fun here: can I move the
rectangle all the way off the page?
<Click and drag>

Har, har! I wonder how far I can move it? <Rectangle disappears off edge of window.>

Can I get it all the way off the....
<Click and drag>

Hey, where’d it go? The line is completely
gone! I can’t even see the little diamonds to
get it back! I give up—this program is beyond
all hope.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 133



134 Chapter 10

Discussion

Adobe could quite rightly protest that this is a grossly unfair test of its design,
and I would agree that any piece of software, including my own, can be made to
look bad by ignoring the documentation. Nevertheless, this brutal experiment
condenses and emphasizes genuine bloopers in the software, bloopers that nor-
mally become apparent only through extended use; think of it as a caricature
rather than a faithful portrait. 

The first blooper is the failure to keep track of previous inputs. I had to
agree to the license agreement twice, I had to confirm my personal information
twice, I had to declare the continent on which I live twice. No conceivable tech-
nical argument can justify these intrusions; the designers were just being lazy. 

Next, the program demanded a great deal of personal information that I
found overly intrusive. Yet when I balked, the program threatened me. I don’t
object to the need for copy protection mechanisms; entering my name and the
serial number on the package is a necessary evil. But the other information has
nothing to do with copy protection; it’s for Adobe’s market research. I now real-
ize that the installation program did not require all the information to proceed;
yet the wording of the threat to abort and the presentation of the information
boxes gave me the impression that all of the information was required. Sure,
they wuz just funnin’ me; but I didn’t laugh. The installation program should
have clearly differentiated among the installation process, the registration
process, and the market research process.

I can already hear the suits dismissing my arguments as impractical. After all,
they’ll say, if we tell the users that it’s just market research and politely request
their cooperation, 95 percent of them won’t cooperate. That’s true—but are we in
the business of serving our customers or cheating them? Obtaining their cooper-
ation under false or misleading pretext is nothing less than cheating.

Let’s move on to my attempts to use the program. My first problem was my
expectation that I could create a document from within the program. The docu-
mentation makes it clear that this feature is not supported by the program. I
question the wisdom of the decision to reject a New Document menu item.
Every document handling program that I have ever encountered permits the
user to create a new document; an aberration of this magnitude demands a
damn good justification. I cannot imagine any such justification.

My other problem lay in my attempts to edit the text. Again, Acrobat’s doc-
umentation makes it clear that text editing is not a supported feature; again, I
question the wisdom of this design decision. Acrobat makes available a smidgen
of text editing in the form of its Text Touch-up feature. But Acrobat’s manual
also warns that this feature becomes tedious and laborious for editing more
than a single line of text. Why would any software company build a product that
they admit is tedious and laborious to use in a commonly expected task? 

The only justification for the preceding feature exclusions would be the con-
sequent creation of user expectations that could not be fulfilled. Yet I cannot
imagine how these features could create such expectations; they are so common
in other programs that users have a clear notion of exactly what can and cannot
be done with a text editor.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 134



Bloopers 135

The problem that disturbs me most, though, is the program’s poor
response to playful experimentation. I tried to play with this program, and
everywhere I went, doors were slammed in my face. My experiments were met
with a combination of dead, cold silence, outright refusal to comply, and contra-
dictory behavior. It is certainly reasonable, in this primitive day and age, to
expect the user to read the documentation in order to access the entire feature
set of the software. But every program should permit its users to get off the
ground without reading the documentation, to carry out some simple and
slightly productive interaction. There must be some support for play.

I eventually discovered that the design problems in Acrobat stem from mar-
keting considerations. Adobe already has an excellent product that meets all my
expectations in regard to Acrobat; that product is PageMaker, and it truly is a
magnificent product. The problem here is that Adobe wanted something that
provides some of PageMaker’s capabilities without cannibalizing PageMaker
sales. The result was Acrobat. I don’t know anything about marketing, but I can
say with confidence that the design that resulted is seriously flawed.

A Special Potshot

I have saved the best for last: the most idiotic example of bad interactivity design
I have ever come across. It’s in Windows 95. Granted, Windows 95 is ancient his-
tory, but this blunder is so egregious that I will dredge it out of the dim past for
your entertainment. The problem has been fixed in subsequent versions of
Windows. Several cleverly orchestrated blunders make the simplest of actions a
nightmare. It all starts with old bumpkin Crawford transferring a file from his
Macintosh to his PC. 

Some Background

The Mac has something called a resource fork in each file, a kind of secondary
ghost file attached to the main file. This resource fork contains useful informa-
tion about the nature of the file, including its file type and creator. The file type
determines which icon should be used for the file in the Finder; the creator
determines which program is launched when you double-click the file. Windows
95 could do something similar, but it didn’t use resource forks; instead, it used a
file extension: a three-letter suffix attached to the filename, separated from it by a
period. For example, MyFile.txt is a text document to be opened with a text edi-
tor, YourFile.exe is an executable file (that is, a program; Microsoft can’t say any-
thing in plain English), and HisFile.zip is a file compressed with the Zip
program. This system was basically sound, but it did have a flaw: it could con-
fuse a beginner who accidentally left out the extension in renaming a file.
Realizing this, the Microsoft designers came up with a kluge (a clumsy corrective
action that patches over the problem without truly solving it): they established a
special option in Windows 95 that prevents the user from changing the exten-
sion, or even seeing it. To protect beginners, this option was turned on when
you first installed Windows 95; presumably, the experienced users who need to
mess around with filename extensions would know to turn it off. Presumably.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 135



136 Chapter 10

Meanwhile, Back at the Ranch . . . The Tragedy Begins

It all started with old bumpkin Crawford transferring a file from his Macintosh
to his PC. . . . Bumpkin Crawford was humming “Old Macdonald had a farm” to
himself as he transferred his Mac file to his PC over his LAN. The old fool
thought he was pretty smart, using his own little LAN, but he was about to be
put in his place by the superior obscurantism of Windows 95. When the Mac
file arrived at the PC, it was separated into two files: the main file and a sepa-
rate file representing the resource fork of the original file. Both files were repre-
sented on the Windows desktop as generic, untyped Windows files. The
resource fork is like the disembodied tail of a lizard; it’s quite useless in its
detached condition, so Crawford heaved it into the Trash Bin. Next, the old
man decided to rename the file to add its extension so that Windows 95 would
know what kind of file it is. He whipped up the Rename command and typed
the new filename with its identifying extension. He hit Enter, and Windows 95
obligingly changed the icon to reflect the file’s new status as a known and recog-
nized file type. So far so good.

But now Crawford crossed the line where Man Was Not Meant to Go. He
realized that he screwed up and entered the wrong file extension. Oh, well; he’ll
just rename the file again. So he whipped up the Rename command again and
typed the name with the new extension. But this time, the icon did not change!

Being your typical computer- illiterate dunce, Crawford repeated the same
operation two or three times just to make sure; he succeeded only in proving
that human pig-headed repetitiveness can never match computer pig-headed
repetitiveness. 

Fortunately, Crawford’s good friend and Windows expert Dave Walker was
but a phone call away; he would have the answer in no time.

Thirty minutes later, Crawford and Walker were still scratching their heads.
In a moment of inspiration, Crawford brought up the Properties window for the
file. Sure enough, there was the filename, and when Crawford clicked it, a caret
cursor appeared in the filename text (a caret cursor is the standard vertical cur-
sor used to indicate the location where text entry will occur). Huzzah! Caret cur-
sors are always associated with text editing, and so he could edit the filename
right here in the Properties window.

It is true that caret cursors are always associated with text editing, but there
was a special exception in the case of Properties windows; there, the caret cur-
sor served to create expectations that were gleefully smashed. In this case, the
Microsoft designers had achieved the dubious distinction of producing a ratio of
accessible states to conceivable states that is exactly zero: you couldn’t do any-
thing in that text edit box! You couldn’t type anything, move the cursor, or
delete anything. The only challenge remaining to them now is to get that ratio
to less than zero. I’m sure they’re working on it.

The two old geezers fumbled and blundered about for a bit longer before
Old Geezer Walker remembered something. He instructed Crawford to select
the Options menu item from the View menu for the folder; when Crawford did
so, a window with a variety of elements appeared. Down near the bottom of the
window, you’ll find was a check box labeled “Hide MS-DOS file extensions for

6490 AID Chapter 10  10/21/02  12:53 PM  Page 136



Bloopers 137

the file types that are registered.” That option was checked on Crawford’s sys-
tem. Under Walker’s directions, Crawford unchecked the option and returned to
the regular Windows display. Lo and behold, now he could see and even type
the filename extensions—and they worked the way they were supposed to!
Having once again proven the superiority of Man over Machine, they congratu-
lated themselves, and Crawford tried to remember what he was doing before he
began this odyssey.

6490 AID Chapter 10  10/21/02  12:53 PM  Page 137



6490 AID Chapter 10  10/21/02  12:53 PM  Page 138



11
C L O C K  S E T T I N G

The task of designing an interface to set the time on a
clock would seem to be simple, yet myriad schemes

have been designed to handle this interface. Herewith a
case study of various efforts.

There are 23 working clocks in my household. My wife and I are not
horophiliacs; indeed, our collection of clocks is pretty much the same as you’d
find in any typical American home. All of these clocks give us a sizable sampling
of the various schemes for setting their time. I shall present these schemes in
terms of the interaction required to set them properly.

6490 AID Chapter 11  11/4/02  2:52 PM  Page 139



140 Chapter 11

Scheme A

The simplest scheme appears on the analog clocks: the user rotates a knob that
turns the minute hand of the clock. As the minute hand turns, the hour hand
advances with it. Turning the knob in one direction advances the time; turning
the hand in the other direction reverses the time. Thus, the interaction between
user and clock looks like this in conversational terms:
[User] “Clock, advance the minute hand.”
[Clock] “Now I read 3:32.”
[User] “Advance some more.”
[Clock] “Now I read 4:36.”
[User] “Advance some more.”
[Clock] “Now I read 5:37.”
[User] That’s too far. Clock, reverse the minute hand a short distance.”
[Clock] “Now I read 5:23.”
[User] “I overshot. Clock, advance the minute hand just a tiny bit.”
[Clock]: “Now I read 5:25.”
[User] “Done!”

Scheme B

Scheme A is used on five of the clocks in our house. The only flaw with this
scheme is that it can get rather tedious if you have a long way to go. One—and
only one—of the digital clocks uses a comparable system: one of the car clocks.
The user turns the knob to the right, and the clock advances; the user turns the
knob to the left, and the clock reverses. An additional feature is the use of accel-
eration; if you hold the knob for longer than a few seconds, the rate at which
the clock changes increases. This shortens the overall interaction:
[User] “Clock, advance.”
[Clock] “Now I read 3:32, now 3:33, now 3:34, now (blur of digits).”
[User] “Stop!”
[Clock] “Now I read 5:28.”
[User] “Reverse.”
[Clock] “Now I read 5:27, now 5:26, now 5:25.”
[User] “Done!”

Scheme C

With the third scheme, used on my bedside clock, we enter the realm of idiotic
design. This scheme is similar to Scheme B, with several insane changes. The
simple two-switch knob of Scheme B has now been replaced with three pushbut-
tons. The three buttons as a group are labeled Set; the buttons themselves are
labeled Time, Fast, and Slow. This scheme does have the advantage that the but-
tons are clearly labeled, a minor failure of Scheme B. Unfortunately, the scheme
itself is so obscure that it throws away any benefit obtained by labeling the but-
tons. The user who reads the labels will assume that the Time button must be
pressed; doing so accomplishes nothing. Instead, the user must know to press
both the Time button and the Fast button or the Slow button simultaneously.

6490 AID Chapter 11  11/4/02  2:52 PM  Page 140



Clock Setting 141

Nothing on the clock itself indicates this requirement. To make matters worse,
the clock advances in only one direction: forward. Should the user overstep by a
single minute, then the only recourse is to advance the clock a full 23 hour and
59 minutes. To make this process easier, the designers set the clock to advance
at a fast rate of 1 hour per second and a slow rate of 2 minutes per second.
Thus, if the user overshoots (a common error), then he must hold both the
Time and Fast buttons down for 23 seconds. This gets him only to the current
hour; he must then hold down the Slow button for an average of 15 seconds to
get to the desired setting. Thus, a typical interaction looks like this:
[User] “Clock, advance fast.”
[Clock] “Now I read a blur, with the hours recognizable.”
[User] “I’m holding the buttons down for 2 seconds.”
[Clock] “Now I read 5:36.”
[User] “Damn! I overshot. I am holding the two buttons down for 22 seconds.”
[Clock] “Now I read 4:02.”
[User] “I’m playing it safe, so I am holding the slow button down for 45 seconds.”
[Clock] “Now I read 5:25.”
[User] “Done!”

Not content with screwing up the design of the interaction, the perpetrators
of this clock also chose to make it mechanically difficult. The three buttons are
spaced only 3⁄8 inch apart, even though there’s plenty of room on the clock for
wider separation. This is absurdly close together; the optimum separation for
human finger separation can be seen on any keyboard: 3⁄4 inch. Moreover, the
buttons themselves are small and pointed, with high pressure requirements to
actuate. Thus, the user must press them deep into his fingers for dozens of sec-
onds at a time. What a pain!

Scheme D

Wristwatches provide us with the next variation on this scheme. Here, at least,
the designers can plead innocence by reason of minusculity. Moreover, watch
manufacturers seem to have standardized on a basic system, although each ver-
sion asserts its uniqueness with some variation just small enough to drive you
crazy. On my watch, the scheme works like so:
[User] “Watch, enter Time Set mode” (presses upper-left button).
[Clock] “I’m blinking the seconds to indicate that these will be changed.”
[User] “I don’t care about the seconds; go to the hours” (presses lower-right but-
ton).
[Clock] “Now I am blinking the hours to indicate that these will be changed.”
[User] “Advance the hours” (holds down upper-right button).
[Clock] “Now I read 5:37.”
[User] “Good. Now go to the minutes” (presses lower-right button).
[Clock] “Now I am blinking the minutes.”
[User] “Advance the minutes (holds down upper-right button).
[Clock] “Now I read 5:37, 5:38, 5:39...(40 seconds go by). Now I read 5:25.”
[User] “Done! Exit Time Set mode!” (presses upper-left button).

6490 AID Chapter 11  11/4/02  2:52 PM  Page 141



142 Chapter 11

All in all, this looks like a fairly clean interaction, but there are several mis-
takes in this design. First, the process begins with the seconds, which few people
bother with. Worse, the seconds are not advanced or retarded; they are reset to
zero when you press the upper-left button. The watch also rounds off the
minute when you reset the seconds; if the seconds are greater than 30 when you
reset, the watch increments the minute reading, which you might have just set.
What idiot thought of that idea?

The other problem is that there are too many modes. You’ll notice that I
didn’t mention the lower-left button; this is the Mode Selector button. My watch
has six modes: Time, World Time, Temperature, Alarm, Timer, and Stopwatch.
As you might imagine, each mode has its own idiosyncrasies. And all six modes
are controlled with just four buttons!

Scheme E

There was one big improvement in Scheme D, buried underneath an otherwise
lousy design: the separation of hour setting from minute setting. The previous
schemes treat the clock setting as one continuous value that you must change
with a single control. But the new, improved approach separates the minutes
from the hours. This has a profound effect; the old continuous approach has
1,440 different settings from which to choose, one for each minute of the day.
The improvement breaks this down into one choice of 24 (hours) and one
choice of 60 (minutes). Moreover, this is a more square arrangement arrange-
ment as recommended in Chapter 8 (24:60 versusvs 1,440).

With fewer choices at each level, the task is simplified. However, a new com-
plication is introduced: the user must distinguish between the two types of set-
tings. In Scheme D, this differentiation is accomplished through the nonobvious
approach of pressing a button repeatedly to change the setting value. The big
idea in Scheme E is to differentiate these with buttons. My car does this with an
admirably simple system. There are just two buttons; an Hours button and a
Minutes button. Pressing and holding the Hours button advances the hours;
pressing and holding the Minutes button advances the minutes. You can’t go
backward, but overshooting isn’t such a big problem, as there isn’t so far to go if
you do overshoot. Here, then, is our standard interaction:
[User] “Advance the hours” (holds down Hours button).
[Clock] “Now I read 5:37.”
[User] “Advance the minutes” (holds down Minutes button).
[Clock] “Now I read 5:37, 5:38, 5:39...(40 seconds go by). Now I read 5:25.”
[User] “Done!”

Let’s pause for a moment to reflect on the observation that this scheme is
not only simple to understand and execute, but also requires only two buttons.
No designer can defend any of the previous schemes on the grounds of manu-
facturing costs. The only defense of the other schemes is their ability to handle
multimodal functions.

6490 AID Chapter 11  11/4/02  2:52 PM  Page 142



Clock Setting 143

Scheme F

Our Macintoshes have a scheme that is slightly better, but not without flaws. Of
course, a computer has the advantage over physical clocks in that buttons cost
nothing; it’s just a matter of screen space. Here is the window used to set the clock:

Here we encounter the only flaw in this scheme: where does the user begin?
The time is clearly presented and labeled, but there is no indication of how to
change it, and the two tiny arrow buttons that might do so are dimmed. How
does the user activate them? The answer isn’t overly obscure: click anywhere in
the time box. The display now looks like this:

6490 AID Chapter 11  11/4/02  2:52 PM  Page 143



144 Chapter 11

At this point, setting the clock is obvious: the user need merely click and
hold the up arrow or the down arrow to change the hour setting. To change any
of the other values, click the value and use the up and down arrow buttons.
Moreover, the user who wants to use the keyboard can type numbers and switch
between the settings with the Tab and Shift+Tab keys. All in all, this is a good
system whose only flaw is a minor initial obstacle. Here’s the script for our stan-
dard interaction:
[User] “I want to change the hours” (clicks hours digits).
[Clock] “Hours digits are now highlighted. I’m ready.”
[User] “Advance the hours” (clicks upper arrow).
[Clock] “Now I read 5:37.”
[User] “I want to change the minutes” (clicks minutes digits).
[Clock] “Minutes digits are now highlighted. I’m ready.”
[User] “Decrease the minutes” (clicks lower arrow).
[Clock] “Now I read 5:36, 5:35, 5:34...(9 seconds go by). Now I read 5:25.”
[User] “Done!”

This scheme does have more steps than our best scheme so far, Scheme E,
but those steps themselves are quick, so I rate this scheme as a close second to
Scheme E.

The clock-setting system used in Windows 95 was similar, but made a classic
mistake:

The designers added that lovely analog clock. How sweet; surely that must
have made the nondigerati feel less ignorant. Unfortunately, the designers fell
afoul of the last guideline presented in Chapter 9: don’t set up false expecta-
tions. An on-screen clock in a control area begs to be manipulated. Users would
click the hands of the clock and attempt to drag them to the correct settings;
when this fails, they will feel a twinge that does not make them better inclined
toward Microsoft. Oops!

6490 AID Chapter 11  11/4/02  2:52 PM  Page 144



Clock Setting 145

Scheme G

Now we come to the fun one: the VCR. Mine uses a truly idiotic and inconsis-
tent scheme; I suspect that VCR manufacturers have some secret compact to
ensure that no VCR will ever have its clock set properly. Here’s a device that has
plenty of input and output capability; it can listen to its remote controller, which
has scores of buttons, and it can talk out of the television display, which doubles
as a decent, if small, monitor. Yet with all these resources at hand, the designers
still manage to screw up the design.

The user begins the ordeal by pressing the MENU button on the remote
control; this pops up an on-screen menu, the top item of which is specially
marked with a little triangular cursor on its left edge:

Clearly, pressing the EXECUTE button on the remote will trigger this menu
item. But the clock setting item is the fourth menu item, so the user must step
down to that menu item by pressing the down arrow button. Once there, press-
ing the EXECUTE button takes us to the next screen, and here’s where things
fall apart. The screen looks something like this:

6490 AID Chapter 11  11/4/02  2:52 PM  Page 145



146 Chapter 11

It’s amazing how many errors the designers managed to pack into this one
little screen. First off, they violated their previously established vertical menu
structure; now, for no apparent reason, the menu is horizontal. Of course, this
assumes that the user figures out that “•AUTO   MANUAL” is a menu.

Next, the designers cleverly changed the cursor. In the previous display, it
was a little triangle; in this screen, they’ve disguised it as a dot. They’ve further
camouflaged the situation by taking the triangular cursor from the previous
screen, coupling it with another triangle pointing in the opposite direction, and
placing these both after the SELECT button, separated by a mysterious slash
whose significance is discernable only to users of hallucinogenic drugs. To
throw the user off guard, they provide one simple, clear sentence: “THEN
PUSH EXECUTE.” Any fool can see what this means, but by this time, the
cogent user is suspicious and wonders what it really means. Last, there’s the
inscrutable line “QUIT    :   MENU.” Why is the colon separated from the word
QUIT? Are QUIT and MENU two additional but independent options, or is
QUIT some kind of precursor to MENU? Perhaps the careful positioning of the
colon exactly between the two words indicates that they are cosmically balanced
in some sort of yin-yang relationship. Does the menu quit, or does quitting raise
the menu? I have no QUIT button on my remote control, but I do have a
MENU button; unfortunately, pressing it does nothing.

Then of course there’s the problem of divining the difference between
AUTO and MANUAL. A reasonable person could guess that AUTO means
“automatic,” but a reasonable person would also wonder, if it’s possible to set
the clock automatically, why does it need me to do anything at all?

Let us suppose, merely for entertainment purposes, that some person some-
where is cogent enough to figure out the solution to the puzzle, while still pre-
ferring to use the manual clock setting. That special person will press the cursor
key to the right, thereby moving the little dot from just in front of AUTO to just
in front of MANUAL. Pressing EXECUTE, she escapes from the trap and enters
the next room of the dungeon:

6490 AID Chapter 11  11/4/02  2:52 PM  Page 146



Clock Setting 147

This is the entirety of the display. I doff my hat in salute to the fiendish
cleverness of the designers. By setting up the user with a clear command in the
previous screen (THEN PRESS EXECUTE), they have ensured that the lack of
the concomitant command in this screen will convince their hapless victim that
there is no means of escape from this screen.

In an unusual lapse, they have retained the same horizontal menu structure
used in the previous screen. However, their creativity was certainly not taxed by
the problem of coming up with yet another cursor: this time they blink the first 1
in the date. The trick here, which any experienced text adventurer could immedi-
ately see, is to use the vertical cursor keys to edit the values and the horizontal
cursor keys to switch from the currently selected field to the adjacent one. And
yes, the EXECUTE button will permit the user to escape from the screen.

This scheme sets the record for bad interactivity design.

There are an amazing number of ways to set a clock. Most are magnificent
demonstrations of towering incompetence. I challenge the reader to design a clock-
setting system for a watch.

6490 AID Chapter 11  11/4/02  2:52 PM  Page 147



6490 AID Chapter 11  11/4/02  2:52 PM  Page 148



12
T H E  D E S I G N  P R O C E S S

Translating a good design into a good product
requires real people to do the work. Organizing peo-

ple is trickier than organizing ideas.

Knowing where you want to go with your design and what mistakes to
avoid isn’t enough; many’s the slip twixt cup and lip. I have seen plenty of good
projects ruined by the human realities of the development process. Herewith some
advice on setting up the project effort so as to realize the intentions of the design.

Who’s the Designer?

The simplest, most easily avoidable source of failure is sloppy assignment of
design responsibility. Every project must have one person with sole responsibil-
ity for the overall design. The clear assignment of responsibility is one of the
fundamental rules of good management, yet interactivity project teams fre-
quently violate this rule. The problem arises, I think, from the necessity of jam-
ming old talents into new slots. We have not yet bred a population of native
workers trained in the particulars of interactivity design; most of our workers
are immigrants from other fields. Thus, a “graphic  designer” becomes an
“interactive graphic designer.” There is nothing in the definition of interactivity
that requires graphic design per se, so the imposition of an alien professional
orientation distorts the design process. Since everybody working on the project
brings an alien professional orientation, the design lacks any center of gravity.

6490 AID Chapter 12  10/18/02  4:42 PM  Page 149



150 Chapter 12

This dreadful expedient is understandable, I suppose, given the dearth of collec-
tive experience in interactivity design. However, the situation is changing rap-
idly, and the time has come for the industry to commit itself to a rational
professionalism. Every project should have a lead designer.

The lead designer is not the same person as the project manager or producer.
The latter task is more managerial in style, concentrating on the logistical, finan-
cial, and political tasks required to keep the project moving. The lead designer
reports to the project manager, and all members of the design team report to the
lead designer. The project manager’s crucial function is to serve as buffer and
bridge between a profit-seeking business and a creatively sensitive design team.

Another symptom of poorly developed professional standards is the intru-
sion of executives into the design process. This has been especially serious in
the games industry, but the problem appears in most interactivity design proj-
ects. Because there is no widely acknowledged professional skill called interactiv-
ity designer, executives assume that anybody (including themselves) can do it. So
they intrude into the design process, always with destructive results. Executives
should run the company, not the project!

The lack of recognition of interactivity design as a profession has also led to
a minimization of the importance of design on the part of some executives. One
marketing executive once boasted to me, “I could sell dog shit in the right box!”
To which I replied, “Indeed, you do.”

The Project Team

Many variations on the project team structure have been experimented with;
most such experiments have yielded disappointing results. Team structures that
have worked brilliantly in one situation have failed miserably in other situations.
It is therefore impossible to declare any particular team structure as ideal. The
highly variable nature of personnel and project requirements makes it necessary
to cobble together each team structure with more opportunism than determin-
ism. Nevertheless, I can offer some opinions on the weak points of various orga-
nizational charts. Here’s a typical org chart for a generic interactivity project:

6490 AID Chapter 12  10/18/02  4:43 PM  Page 150



The Design Process 151

Projects organized this way often fail, because the tasks are broken up by
available talents, not by functional requirements. The user interface consultant
sits off to the side, fecklessly making recommendations that may or may not be
adopted by the programmers. The technical people are segregated from the
graphic people in the classic two-cultures style (see Chapter 27)—but program-
ming and art are not the fundamental tasks of the project. Here’s an analo-
gously stupid org chart for a baseball team:

You don’t want to organize your effort by the talents of your people; you
want to organize it by the tasks you need done; then in filling each box with an
actual person, you make the best fit you can. Therefore, a more utilitarian org
chart for an interactivity project would look something like this:

6490 AID Chapter 12  10/18/02  4:43 PM  Page 151



152 Chapter 12

The underlying concept here is to organize the team in a manner that
reflects the natural cleavage lines of interactivity design. This will minimize
interdependency of people and groups.

Qualifications for the Interactivity Designer

To make this team work, the lead designer must boast a variety of talents. I shall
neglect the obvious managerial and fiscal skill requirements of such a position.
What does it take to do this job?

The first qualification is the ability to program. This is a painful reality that
many will refuse to accept, and there are certainly a number of successful
designers lacking this skill. Yet I believe that programming ability is so funda-
mental to interactivity design that, within ten years, this requirement will have
asserted itself in Darwinian fashion.

There are at least 23.7 scads of reasons why the lead designer must be able
to program. Some arise from human foibles; for example, programmers often
use trumped-up technical excuses to influence the design process. The lead
designer must understand the technical strengths and weaknesses of the target
platform to best fit the design to the platform. There are also scheduling factors
to consider; if you can’t program, you’ll find it surpassingly difficult to estimate
the time required for implementing various features.

The prime reason for learning to program, though, is simple: interactivity
design is an ambassadorship between user and computer; anyone who does not
speak both languages will fail. It is not necessary that the designer write the
code himself; it is not even necessary that the designer be able to write all the
code himself. It is necessary that the designer have a solid grip on the program-
ming language used in the project. If the project uses C++, then it needs a
designer who has written programs in C++.

The best designers are not programmers at heart: they are often people
with little or no technical background, who have taught themselves enough pro-
gramming because they realize how important an understanding of program-
ming is to their work. Don’t dismiss these as impossibly difficult requirements to
meet. I admit that persons with these qualifications are rare, but this means
only that we’re talking about an odd combination of talents, not an impossible
combination of talents. The primary reason such persons have not emerged is
that we haven’t yet offered economic incentives for anybody to develop such a
combination of talents. Once interactivity-based firms realize the importance of
good design, that problem will be eliminated, and we’ll have a good crop of
designers within a decade or two. Until then, we have to make do.

Empiricism

Back in the bad old days, computer programming projects were monstrous
affairs requiring huge teams of programmers slaving away at bits of code that
were combined into one massive program. Over and over, the act of combining
different code from different programmers inevitably led to mismatches and
conflicts that caused the program to malfunction. Millions of dollars were
wasted on screwed-up programming efforts that never worked. 

6490 AID Chapter 12  10/18/02  4:43 PM  Page 152



The Design Process 153

The Big Lesson that emerged from those painful experiences was that pro-
grammers needed some scheme for managing huge software projects. A great
many brilliant ideas were developed in pursuit of this goal: structured program-
ming, strong typing, object-oriented programming, and more. But one idea
from those days, still in favor with many programmers, is wrong for interactivity
design: the technical specifications document.

This arose as a means of coordinating all involved. In many corporations,
there were two documents: the Performance Specifications document, written
by the clients (whoever wanted to use the program); and the Technical
Specifications document, written by the programming manager and presumably
providing a translation of the Performance Specifications document into pro-
gramming terms. These documents ensured that everybody knew exactly what
they were getting and giving; it was in many ways like a contract. As people
learned how to use the idea, there arose the belief that a well-written specifica-
tion would obviate all programming problems. The wisdom was, “If your specifi-
cation is clear and precise, the task of programming will be so straightforward
as to ensure that there will be no problems.”

The system worked; a great many big projects were built in this manner, and
it definitely lowered the chaos level of software projects. Nowadays, no serious
software engineering project is undertaken without a complete and thorough
tech specs document. If your programmers are experienced, they will surely
insist on such a document.

What I’m about to say will get this book burned on many college campuses:
tech specs documents are not a good idea for many interactivity projects. All of
your programmers, technical experts, consultants, and their dogs will howl with
indignation at the heresy of my claim. So you’re going to need a lot of good
arguments to hold your ground on this important point. 

I am not rejecting the use of any kind of coordinating documentation for
the project; the more people there are on a project, the greater the necessity for
documentation to make certain that everybody is on the same channel. What I
am dismissing is a document with specifications: formal statements created before
programming begins that together constitute a contract between programmers
and management. Such a document declares an intrinsically adversarial relation-
ship between you and the programmers, a relationship that must have a contract
to ensure that both sides are treated fairly. 

Careful planning is indubitably crucial to the success of any project, but we
all intuitively recognize the need for a certain amount of flexibility in executing
a project. Airline pilots rank among the most by-the-book experts in the world,
but every single one of them will deviate from his filed flight plan if a thunder-
storm develops along the flight path or to avoid excessive turbulence.

The applicability of formal planning procedures hinges upon the pre-
dictability of the circumstances surrounding the project. If the earth’s atmos-
phere lacked weather, all airplane paths could be precisely specified in advance.
If you’re designing a data entry system for a mail-order company, you can spec-
ify in advance the technical expertise of the workers who will use it, the equip-
ment that they will use, and the load that will be placed on the system. A tech
specs document is appropriate and useful in this situation. But many interactiv-
ity projects have nowhere near as much certainty surrounding them. How many

6490 AID Chapter 12  10/18/02  4:43 PM  Page 153



154 Chapter 12

hits per day will your website get? Will the user have a fast machine? How much
RAM will the user’s system have? What conventions will the user understand
coming into the program? 

The killer problem lies not in these technical details; it arises from the very
youth of interactivity design. A good programmer can look at an algorithm and
quickly estimate how much RAM it will take and how fast it will run. That’s not
because good programmers are geniuses; they simply have lots of experience to
fall back upon. As an interactivity designer, you don’t have that rich background
of experience on which to count—nobody does! We are all collectively making
this up as we go along. You can’t look at a single interaction component and
estimate how smoothly it will function, how easily users will understand it, or
how quickly they can operate it. Someday, years from now, there will be thou-
sands of experienced professionals and library shelves full of books about the
details of interactivity design. When that day comes, we’ll surely have developed
all sorts of rules of thumb comprising “standard industry practice,” and then we
can create detailed blueprints for our work. For now, our ignorance forces us to
respect the need for flexibility.

Here’s an example: In my Erasmatron project, I created a powerful scripting
editor packed with features; only after it was fully operational did I realize that
the time it needed to draw the screen was too long, breaking the natural flow of
the interaction. I had to expend considerable effort to correct the problem, and
I very much doubt that I could have anticipated it. If the project had involved
several programmers and relied on a tech specs document, making the changes
necessary to fix the problem would have required endless arguments about
changing the tech specs; in the end, I would have settled for the slow screen,
and users would have been cheated.

There are two primary considerations in deciding how large a role tech
specs document should play in your project. The first is the degree of novelty in
the project. If you’re banging out a standard- issue 3D shooter game, most of
your design is already done for you, and you’ll have no problems using a strong
tech specs document. Likewise for a straightforward information page on the
web or yet another word processor. On the other hand, if you’re off in the
weeds designing something that’s truly new and different, a tech specs docu-
ment will make it more difficult to improvise; your programmers will hold it like
a gun to your head.

The second factor determining the overall utility of a tech specs document
is the size of the team working on the project. If this is a multi-million dollar
project with a passel of programmers and an army of artists, you damn well bet-
ter have a lot of documentation specifying just how all those efforts fit together.
If this is a small-group effort, just you and a couple of others, you have more
freedom to improvise and less need for tech specs.

Of course, if you’re willing to treat a specifications document as an informa-
tion document rather than a contract, it will have value in just about any proj-
ect. Just make sure that everybody understands your freedom to change the
specs without their approval.

6490 AID Chapter 12  10/18/02  4:43 PM  Page 154



The Design Process 155

Polish

Related to this notion of empirical design is the concept of a polishing phase for
any interactivity design. All too often, the interval between “It works!” and “Ship
it!” is a few days. There should be an interstitial phase here, which I call the pol-
ishing phase. During polishing, you’re not trying to find bugs; you simply play
with the software to find the little inconveniences and rough spots where the
interactivity flow is broken. This is the stuff of subtle judgment; no one but the
lead designer can make the final judgment as to the adequacy of the polish.
Simply put, it must “feel right.” This is perhaps the most subjective decision in
the entire project, and you must schedule the time to make this decision with
adequate research. Give yourself at least a week of polishing trials with the soft-
ware before you freeze the design; I’d recommend a month as an ideal polishing
period. You’ll be under tremendous pressure to ship the product, but you must
stick to your guns; polish is the only differentiator between a good product and
a great product. Polish, polish, polish!

Convergent Testing

Software testing has traditionally focussed on finding bugs and thus has always
been considered a technical task. While I certainly concede the necessity of such
testing, I also insist that bug testing is not enough. There must also be user test-
ing, which seeks to learn just how and where users get confused. I suggest that
you use a convergent system. First, release test versions of the software to techni-
cally adept users who can overlook the minor glitches that we all expect. These
testers will identify deeper-level problems with the design and suggest ideas you
might not have thought of. The best testers at this stage are your professional
peers. Just turn them loose on the software and see what they say.

Next comes the serious-user testing. You carry this out with the non-
professional users who will nonetheless be using the software heavily. With these
testers you need a more intrusive approach to the reporting of problems. These
testers will often misconstrue the nature of the problem, reporting something
that doesn’t go to the heart of the issue. You can accept written test reports
from them, but you must follow these up with a telephone call and some direct
interaction. Ask some probing questions; find out what’s really bothering the
tester. Often, you can address the tester’s complaint without necessarily imple-
menting her suggested solution.

Last comes naïve-user testing. Select testers who don’t know much about
their computers, who don’t dive into software, but who might still want to use
your product. Do not send them the software and ask them to report back; they
will not be able to articulate any problems they encounter. Sit down with them
in their own environments, let them start the program, and watch them as they
use it. Make them talk out loud about their mental processes and ask them espe-
cially to voice every single question that pops into their minds as they work.
Take copious notes. Back at the lab, collate all the points of confusion from
your various testers; if you see a common factor, redesign the offending feature.

6490 AID Chapter 12  10/18/02  4:43 PM  Page 155



156 Chapter 12

Storyboards

One of the most important and subtle benefits of the Web has been its entice-
ment of a great many talented nontechnical people into interactivity design.
Those people have brought with them techniques and ways of thinking that
have enriched a field that was narrowly technical in outlook. The largest group
of immigrants has come from the field of visual arts, and they have brought
with them one technique that I wish they’d left behind: storyboarding.

Many designers are deeply wedded to the storyboard, so I want to make my
points with pinpoint accuracy, describing the aspects of storyboarding that are
useful as well as those that are pernicious. The two positive benefits of story-
boarding for interactivity design are sketching and team coordination. We all
know how expensive graphics can be for any interactive product; with a graphic
artist sketching rough diagrams of the various screens, we can preview the basic
image before we spend all the money needed to implement it. That’s good. The
other benefit of storyboards is the way that they give every team member a clear
visualization of the various screens of the design. That’s good, too.

But now we come to the dark side of storyboarding. As soon as you assem-
ble those sketches into a sequence—a storyboard—you have insinuated sequen-
tiality into your design, and sequentiality is intrinsically non- interactive. 

Recall Chapter 7 and its Crawford diagrams. The first diagram in the
chapter was this:

This is the storyline, the bad old linear design that we try to make as thick
and bushy as possible when we want interactivity. Linearity, sequentiality—these
are the antithesis of interactivity. A user marching down the primrose path that
you have laid out for her has no choices, no options, no verbs. She can’t speak
because you have muzzled her. That’s not interactivity. A storyboard is a device
for linearizing images; by using it, you prejudice the design process against inter-
activity. I have nothing against sketches or passing them around; just don’t
assemble them into a deliberate sequence. Toss them together in a loose pile,
not a strict sequence. Call it a storypile.

6490 AID Chapter 12  10/18/02  4:43 PM  Page 156



The Design Process 157

My second objection to storyboarding is that some people think that it con-
stitutes a useful planning document for interactivity design, like an outline for a
document or a blueprint for a building. Storyboards are excellent planning tools
for video productions—but video is not interactivity! If you want to design video,
by all means, please do so, but don’t poison this field with an insidiously mis-
leading tool, and don’t try to pass yourself off as an interactivity designer when
your true talent is as a video designer. A storyboard is not only misleading, but
also inadequate—there’s plenty of stuff to consider that can never be shown on
a storyboard.

All interactivity projects should be led by a designer broadly educated in the arts and
able to program. Teams should be organized functionally rather than by background.
Don’t overspecify the project in advance. Polish, polish, polish! Test convergently.
Don’t rely on storyboards.

6490 AID Chapter 12  10/18/02  4:43 PM  Page 157



6490 AID Chapter 12  10/18/02  4:43 PM  Page 158



13
A D V I C E  F O R  S P E C I F I C  F I E L D S

In this chapter, I apply the grand principles I have
pontificated upon through this book to each of a

number of specific fields of endeavor. Although you
may not have a direct professional interest in any of these

fields, the comments may prove interesting.

Game Design

Computer-based interactivity got its start in game design. While other fields
were slowly groping their way toward interactivity, game design was reveling in
it. Well-designed interactivity has always been central to the success of games;
hence, game designers possess highly developed sensitivities for interactivity.
Certainly designers from other fields would do well to examine game design
closely. You can learn as much from the turkeys as from the winners; for each
game, ask yourself, “What makes this game so good (or so bad)?” Your answer
to that question will almost always be founded on some aspect of the interactiv-
ity in the game.

The central design issues in game design now concern the character of the
interactivity: specifically, the nature of the thinking that the game demands of its
user. The shelves teem with games, but there are only three basic thinking ele-
ments in all current games: hand–eye coordination, puzzle solving, and resource
management. All games combine these three elements in varying degrees.

6490 AID Chapter 13  10/18/02  4:45 PM  Page 159



160 Chapter 13

Hand–Eye Coordination

Games that use hand–eye coordination move quickly and demand fast reflexes.
Information races through the interactive loop at high speed. The user’s brain
activity is concentrated in the cerebellum, which handles the lower-brain func-
tions associated with sensation and motor processing. The process of mastering
a game requires the player to short-circuit normal sensorimotor processing.
Information normally travels upward from the cerebellum into the cerebral cor-
tex for what we might call conscious processing. If we see a bee, the cerebellum
might handle the basic processing of recognizing it as a small, active, living
thing, but the recognition of it as a bee requires higher-level processing, and the
decision to take action will involve additional objective factors such as the pres-
ence of a window between the person and the bee. Thus, information spreads
upward from the cerebellum into the cerebrum, wanders through there, inte-
grating with other bits of information, and then passes back down into the cere-
bellum as instructions to swat the bee, close the window, or move away.

The beginning player of an action game goes through the same process, but
as he learns the game, the amount of information flow through the cortex
diminishes, reducing processing time and yielding faster reflexes. The player
teaches lower levels of his brain to respond directly to the game’s stimuli. A mas-
ter player has cut out a great many of the cerebral middleman neurons, confin-
ing processing as closely as possible to the cerebellum. Such players report an
altered state of consciousness while playing the game at their best; the highest
levels of cortical processing are suppressed, and the player loses awareness of his
surroundings. Another symptom is the experience of losing track of time: the
player suddenly jerks himself out of the altered state of consciousness and real-
izes that it is three o’clock in the morning.

This brings us to one of the unhealthy effects of action games: their narcotic
effects on consciousness. Common sense tells most people that the dull expres-
sion and trancelike behavior of action game players is unhealthy, but it has been
difficult to nail down the gut-level feeling. If we think of this behavior in terms of
altered states of consciousness, then we can recognize some of the appeal and
danger of the activity. By shutting down consciousness, the player obtains relief
from whatever demons haunt him. It is precisely the same behavior that alco-
holics and drug addicts display, undertaken for the same reasons, and with essen-
tially the same behavioral effects. Troubled persons can banish awareness of their
pain by immersing themselves in long hours of action-game playing.

Another factor is, of course, the violence. Often the stimuli in a game are
dastardly monsters in desperate moral need of extirpation, the player obliging
with firepower of biblical proportions. Not all games are violent, of course. In
some games, the violence is euphemized. There are also plenty of completely
nonviolent, fast-action games.

The role of violence in computer games generates plenty of debate, espe-
cially after it was learned that the murderers in the Columbine High School
massacre in Colorado were aficionados of violent computer games. All games
must have conflict to drive the interaction, and violence is the simplest and
most intense form of conflict—hence, the predilection for violence in so many
computer games. But simplicity and intensity are not the sole measures of qual-

6490 AID Chapter 13  10/18/02  4:45 PM  Page 160



Advice for Specific Fields 161

ity in any human experience. Candy boasts the simplicity and intensity of sugar,
but it hasn’t monopolized our diets. True, our less worldly wise gourmands (chil-
dren) overpartake of this food, but we all outgrow the short, sweet satisfaction
of candy and turn to more subtle tastes to entertain our palettes. In the same
way that the intense pleasures of candy, cartoons, and comic books command
the entertainment enserfdom seize the attention of our children, only to be
eventually outgrown, so too does the craving for violence represent a phase in
the maturation of some individuals. The real problem with violence, then, is not
that it is unethical, but that it is ultimately boring. Once you’ve seen a million
eviscerations, you’ve seen ‘em all.

The challenge to computer game designers is to engage some other portion
of the human psyche, probably something a little further up the brainstem. One
such mental engagement is the solving of puzzles.

Puzzles

Puzzles, in their pure form, are completely noninteractive. They hide a solution,
and the player must experiment to divine that solution. The puzzle makes no
active effort to foil the player’s efforts; its strength lies in its obscurity. The clas-
sic example of the use of obscurity was the adventure game that required the
player to pass an obstacle by feeding a dead fish into a slot in a vending
machine. The wonder of it is that so many players praised the game for its sur-
passing counterintuitivity!

While adventure games provide the purest example of puzzle games, game
designers have been slowly fusing puzzles with other elements of the design to
imbue them with some dynamism. For example, a jumping game can be seen as
a puzzle with moving parts. The player must learn to run, jump, and duck in a
precise sequence to achieve victory. A puzzle might even include some active ele-
ments to chase the player, in which case it certainly provides some interactivity.
But where does puzzleness fade into interactivity? A player blasting sneaky mon-
sters could just as well be said to be solving the puzzle of their algorithms—once
he understands their style of fighting, he can massacre them at his leisure. The
difference between puzzleness and interactivity lies in the perception of the
user. So long as the user does not understand the algorithms driving their
behavior, he perceives his opponents to be operating with free will, and there-
fore believes that he is interacting with them. Once the player understands the
behavioral algorithms, the interaction collapses and becomes a puzzle.

Some confusion surrounds the integration of puzzles with other forms. For
example, one popular design alternated puzzles with video sequences. Supposedly,
the combination of “interactive” puzzles with noninteractive “movies” yielded
“interactive movies.” This supposition presumes that interleaving constitutes inte-
gration. If you shuffle together a deck of hearts and a deck of spades, you don’t
get a deck of sparts or heades—you get a deck of hearts and spades. 

In general, puzzles have done little to advance interactivity design. While
there have been a number of successful pure puzzle games, such games are
weak in interactivity and do not represent enduring lines of development; they
tend to come and go as fads. Designs that incorporate puzzles compromise their
interactivity to obtain the challenge offered by the puzzles.

6490 AID Chapter 13  10/18/02  4:45 PM  Page 161



162 Chapter 13

Resource Management

Resource management games, sometimes called strategy games, operate at a
cerebral level; they present challenges requiring high-level processing. The most
complex of such games demand integration of huge amounts of disparate data
and detailed assessment of its consequences. There are many variations on this
theme: military strategy games, explicit resource management games, and role-
playing games. All of these games require the player to juggle limited resources
to optimize performance in pursuit of some goal. In military strategy games, the
military units constitute the resources that are used and expended in pursuit of
victory. In role-playing games, the attributes of the player-character constitute
the resources to be used in overcoming opposing players, thereby obtaining
additional resources. In explicit resource management games, the player must
marshal limited amounts of food, money, population, or other resources in pur-
suit of the goal.

Most of the variation in resource management games comes from integra-
tion of resource management with other styles of game play. For example, the
classic conquer-the-world games combine straightforward military resource man-
agement with economic resource management: the player uses military units to
capture cities that generate new military units. Another approach is to integrate
a military strategy game with a hand–eye coordination game: position your mili-
tary units and then fight the battle hand to hand. This approach goes back to
the early 1980s. There have also been attempts to combine resource manage-
ment with puzzle games. Some role-playing games do this by presenting the
player with puzzles along the way. 

Where to Go from Here?

Game designers have tried to pump life into these forms by two main strategies:
technological advancement of old designs and odd new combinations of existing
forms. The technological advancement approach took a great leap forward with
the onset of 3D display technology, but this approach is nearing its technologi-
cal ceiling: the improvements yet to be made can do little to boost the game
experience. The utility of the combinatorial approach is also fading; almost all
of the available combinations have already been experimented with. 

It would appear that game design has exhausted its creative potential.
However, I can offer a few suggestions for new veins of creativity to mine. The
first of these is the exploration of alternative thinking styles. Each of the exist-
ing basic genres relies on a fundamental dimension of human thinking:
hand–eye coordination, random creativity for puzzles, and careful calculation
for resource management. Additionally, most of these games rely heavily on spa-
tial reasoning. This suggests two other dimensions of human mentation that
might prove worthwhile.

The first of these is verbal reasoning. I don’t mean the use of words to pres-
ent fundamentally mathematical problems; rather, I refer to the use of linguistic
processing in the human mind. Such processing abilities far exceed our capacity
for formal logic in their depth and richness, but designers are often at a loss to
comprehend the potential of this approach, largely because our verbal reasoning
is deceptively automatic, and most designers are so steeped in the tradition of

6490 AID Chapter 13  10/18/02  4:45 PM  Page 162



Advice for Specific Fields 163

spatial reasoning that it boxes in their imagination. Consider, however, that a
riddle is a verbal puzzle, and a conversation is a purely verbal interaction.
Consider the possibilities of any political interaction game (corporate politics,
government political intrigue, geopolitics, and so on). Spatial reasoning is use-
less in such games; their interactions are manifested verbally. Consider also the
classic mystery genre. This genre has done well in both cinema and literature,
but the attempts that have been made in the games field have not been success-
ful. I suspect that mystery games have failed because they do not effectively
bring verbal reasoning to bear.

A second dimension of mentation is affective or social reasoning. Most male
designers have little appreciation for this dimension, but it is one dimension of
specialization for females. I find it ironic that game designers constantly worry
about how they might go about designing “games for girls.” The question is
framed in such a way that the answer is to put a cute bow on the head of Pac-
Man and call it Ms. Pac-Man (which is what Atari actually did). If the question is
reformulated to “How can we utilize affective or social reasoning in our
designs?” then we have a constructive challenge that can guide us to a solution.
Unfortunately, this dimension of human thought differs so much from that
employed in current designs that the solution will require a major effort. I have
been working on the problem for ten years now, in the form of interactive story-
telling, and have succeeded only in laying the foundations. 

Some designers will protest that computer games generate plenty of emo-
tion, citing the moments of elation or terror they have experienced in the bet-
ter games. This logic confuses affective reaction with affective interaction.
While the player may experience moments of reactive elation or fear, the inter-
action itself involves no emotional effort. Indeed, some games seem to have the
reverse effect, deadening the player’s senses of sympathy and empathy by
mechanically inflicting suffering and death in amounts never approached in
the bloodiest of movies.

Consider, for example, the aggregated body count generated by one com-
puter game: Doom. Assume that 5 million people played this game. Next,
assume that each player has played the game for an average of ten hours—long
enough to figure out how to survive. Last, assume that the average Doomster
kills one monster every ten seconds. While there are wimps who can’t perform
to that standard, many players do much better. Putting these numbers together,
I calculate a body count of 18 billion. Compare this with the Holocaust, surely
the most emotionally intense incident in human history, in which 6 million peo-
ple were killed. One computer game has generated the virtual analog of 3,000
Holocausts without any concomitant emotional impact.

Large Verb Sets
Games have traditionally sported a small vocabulary of verbs, because the early
games had to operate on joysticks with little expressive capability. Design styles
have therefore concentrated on creating a small set of all-purpose verbs capable
of executing a variety of tasks. The ideal game boasted an elegant, tightly knit
set of verbs. This suggests an alternative design avenue to explore: the creation
of large, loosely structured verb sets. Instead of hard-wiring the verbs directly

6490 AID Chapter 13  10/18/02  4:45 PM  Page 163



164 Chapter 13

into the program code, they would be stored in some sort of table defining
their capabilities. Broadly defined verbs would be replaced with narrowly
applied verbs. Such designs would face many new difficulties, such as how to
communicate to the user which verbs are applicable in any given situation.
Nevertheless, the strategy of large unstructured verb sets opens up new realms
of game design.

Marketing Constraints
Sad to say, the greatest obstacle to creative development in the computer games
industry lies on the marketing side, not the design side. Suppose, for example,
that some genius were to design a game bursting with affective and social rea-
soning. Such a game would be completely new—and that would be its death sen-
tence. What sane publisher would risk a million dollars on development costs
for a game genre with absolutely no track record? In the good old days when
games cost $50,000 to develop, risks like this were occasionally acceptable, but
nowadays there is no point in spending that little—such a game would surely fail
because of its necessarily low production standards. Publishers must either com-
mit a ton of money or walk away from the design, and they will all choose the
latter course, even though they know the game might be a major breakthrough.
As one publisher told me back in 1984 about Balance of Power, “This is a great
game and I really hope that somebody else publishes it, but I simply can’t justify
the risk.” Besides, they figure that, if it turns out to be a success, they can have a
competing clone on the market within 12 months. 

But let’s just suppose, for the sake of argument, that our genius designer
finds a publisher foolhardy enough to risk a million dollars to develop the
game. Having done so, the publisher must then find a distributor crazy enough
to stock the game. If you think that publishers are hidebound, you should see
distributors! These people have no sense of duty to the future whatsoever; they
run their businesses purely by the numbers. They will not carry a game unless
they have comparable sales data from previous, similar games to assure them of
success. If our genius’s design truly is creative, then there will exist no previous
similar games—and the distributors are certain to reject it.

But let’s again be irresponsibly optimistic and assume that some distributor
somewhere feels lucky and opts to take a fling on this game. Now that distribu-
tor must convince the retail outlets to purchase it. Why should a retailer risk
precious shelf space on a complete unknown, especially when there are so many
proven performers to show? Standing on the sidelines, we might all urge her to
“just give it a chance,” but for those whose livelihood depends on getting the
right mix of products that will move off the shelf, being charitable with shelf
space only guarantees business extinction. 

What the hell—in for a penny, in for a pound! Let’s just suppose that we
find a reasonable number of retailers in a charitable mood. They give our
grandly creative new game a few inches of shelf space. Now everything depends
on the store sales staff. Why should they bother to even look at the game? They
know what sells, and that’s what they’ll recommend to the customers. 

And here we come to the greatest obstacle of all: the customers. What kind
of customers will visit the games shelves? Answer: customers who have pur-
chased and enjoyed previous games—the old games whose traditions our game is

6490 AID Chapter 13  10/18/02  4:45 PM  Page 164



Advice for Specific Fields 165

breaking away from. The young fellow looking for the latest, most spectacular
shoot-em-up is not going to be interested in some wimpy affective-reasoning
game. Who wants to work things out with the bad guys? Just blow their friggin’
heads off!

Of course, there are plenty of people who would be interested in our creative
new game: grandmothers, little girls, guys undripping in testosterone. They’d
surely be interested in our game and might even buy it. But these are exactly the
people who don’t browse the game shelves, because they already know that com-
puter games are vaguely tawdry exercises in violence and geek-think.

Thus, the entire system is stacked against the creative new designs. It’s a
social system—a community—that has over the years learned, by dint of much
pain and loss, what works and what doesn’t work, and how little latitude there is
for deviation from the norm. One brave company can buck the trend, but the
distribution system is too big for that company’s heroism to accomplish anything. 

Ah, but what about an evolutionary approach? What if we slowly insinuated
elements of affective or verbal reasoning into existing games, richening the mix-
ture every year? That is unlikely to work because there’s no bridge population of
customers to carry us over the gap. There aren’t many shoot-em-up-loving little
boys who might occasionally want to make friends with the monsters. There
aren’t many doll-playing little girls who might fancy occasional recourse to a
double-barreled shotgun. Unless the global environment changes dramatically,
human beings will not evolve into turtles, because the jump is too great.

Educational Software Design

From the earliest days of personal computers, we have hoped for great contribu-
tions from them in the educational field. Results have been spotty; some impres-
sive advances have been chalked up, but my overall reaction to the state of
educational software is disappointment. Let’s start by examining the two areas
of greatest success: early learning and simulation. 

Early Learning

The early-education field has generated lots of activity as well as great commer-
cial success. We now enjoy an abundance of excellent software for the under-10
age group. Why have these designers succeeded where so many others have
failed? The answer, I think, lies not in the design but in the problem. Young
children lack dense reasoning skills; their learning process is less conscious and
more immediately experiential. The greatest challenge in early education is pre-
senting the content in a manner that attracts and retains the child’s attention. In
a roomful of boisterous kids, this demands consummate skill, but a computer
program has the huge advantage of handling one child at a time. Moreover, it’s
easy to dress up the content in lots of animated eye candy. Teachers can’t be
talking dinosaurs that morph into the letters of the alphabet. 

Another crucial feature of the computer for early education is its immediate
responsiveness. In a roomful of kids, each one’s behavior must be constrained in
some fashion, and kids don’t like such a passive stance. Their little minds are

6490 AID Chapter 13  10/18/02  4:45 PM  Page 165



166 Chapter 13

going a mile a minute, and they want to do things. The computer can keep
them fully occupied, bending all that energy in the right direction. 

Given these huge advantages, it’s no wonder that early-education software
has been so successful; the genre is one of the perfect applications of the com-
puter. However, we should not draw too many conclusions from this success.
Watching the Green Bay Packers make mincemeat of the Platte County High
School football team doesn’t teach you much about how to play football. We
need to examine a tougher problem.

Educational Simulation

Educational simulation programs have shown little in the way of commercial
success, but nevertheless remain very successful in design terms. In other words,
there are plenty of great educational simulations out there, but they’re not
being sold commercially; most were created by teachers and are shared with the
community. The strength of this software lies in the fact that it concentrates on
processes rather than facts. As I’ve claimed elsewhere, facts are dead, uninterac-
tive, but processes are the basis of interactivity. Simulations can’t help but be
interactive! The most impressive simulations are generally those in the physical
sciences, especially physics, because the designers can zero in on an isolated
process and simulate it easily. In other fields, the most important ideas are not
so easily reducible to the mathematical terms required by the computer, and so
simulation is more difficult to do well. 

Guidelines for Educational Software

With these successes in mind, I can offer educational software designers three
broad guidelines.

Eschew Exposition
As I explain in Chapter 19, the original educational technology is play, an intrin-
sically interactive process. The early attempts at formal education in most
ancient societies took the form of a group of students gathered around a mas-
ter, engaged in discussion; note how deeply interactive this process is. 

Sometime around the founding of the medieval universities, formal educa-
tion took a wrong turn. Perhaps it was the close association of learning with reli-
gion and the coincident concern with enforcing religious orthodoxy, but for
some reason the medieval universities shifted their focus from discussion to lec-
ture. Education shifted from an interactive process to a one-way broadcast of
information. The mistake was exacerbated by the invention of the printing
press: now learning was enshrined in books, and of course, there’s no arguing
with the authority of a book. Incidentally, my old friend Erasmus resisted this
drift; his many writings on education excoriate mindless memorization of facts
and extol an active role for students. He also recommended play as a healthy
part of education.

But Erasmus was a voice in the wilderness; educational systems became
obsessed with imparting facts rather than developing the process of thought.
This is a natural result of the discomfort we feel with the abstract nature of

6490 AID Chapter 13  10/18/02  4:45 PM  Page 166



Advice for Specific Fields 167

thought, compared with comfortable, tangible fact. We can even see some of
this today in the emphasis on test scores as a means of evaluating educational
success. The brevity and legal rigor required of a test push it away from abstract
process and toward concrete data. It’s easy to ask a student when Columbus dis-
covered America and then evaluate the correctness of the answer; but ask the
question that makes history important—why did Columbus discover America?—
and the answer becomes long winded and impossible to grade by clear, rigor-
ous, legally defensible standards.

All the positive trends in education have, at the same time, made worse the
problem of data intensity. The adoption of mass education required methods
with economies of scale; interaction has no economies of scale and so was slowly
pushed into the background. Every new educational technology or medium
tended to work against interactivity. Cheaper textbooks encouraged teachers to
simply assign readings; snazzy lecture halls with demonstration equipment
reduced students to passive audiences; overhead projectors, slides, movies,
mimeographs, and all the other paraphernalia took us ever further away from
interactivity.

I remind you, though, that all of this—the entire style and approach of the
last thousand years—is the newfangled technology, the untested fad. The tried-
and-true educational strategy, bearing the stamp of approval of millions of years
of natural selection, is play. You don’t see kittens sitting quietly in nice neat rows
of desks, watching attentively as some old fogey of a cat stands in front of a black-
board showing anatomical diagrams of a mouse with approach angles and attack
vectors. Play isn’t some namby-pamby educational strategy; as any cat can tell you,
it’s a jungle out there, and you need solid education if you are to survive.

Therefore, your first task as an educational software designer is to break
loose from all the old expository prejudices that have entwined themselves
around your neurons. You must stop thinking of education as a process by
which a better- informed person transmits information to a less- informed per-
son. Instead, you must think of it as an active process in which a student hones
thinking processes by trying them out in a catholic panoply of experiences. Your
role in this process is that of an assistant, not a commander.

In practical terms, this means that you must not include simple facts in your
software. Dressing up a fact in multicolored animation with stereo sound does
not give it life; it’s still dead, Jim. You must examine your design minutely, look-
ing for every fact that is not necessary for the student to make a decision, and
then coldly expunge such facts.

The obvious objection to this rule is that some facts are essential to any dis-
cipline. The physics student must learn the value of the Heisenberg constant;
the biology student can’t avoid memorizing the basic taxonomy of life on earth.
If facts aren’t permitted in software, the student will be crippled. My answer to
this objection is simple: use an appropriate medium, of which there are many.
Put the facts in textbooks, or lecture, or videos, or slides, or handouts. Don’t
ask software to handle material that it’s not well-suited for; you’ll only produce
lousy software.

6490 AID Chapter 13  10/18/02  4:45 PM  Page 167



168 Chapter 13

Embrace Process
The rejection of facts does not leave the educational software designer bereft of
content; there remains a huge, and much more interesting field of inquiry to
handle: process. Biology isn’t about the names of species; it’s about how life
works—the processes of life. Linguistics is not a compilation of foreign lan-
guages; it concerns how languages operate, how they change, how they are
learned. If you focus your attention on this process- intensive thinking, you’ll
design better educational software.

The collision between process- intensive thinking and data- intensive thinking
(see Chapter 17) is nowhere more poignantly demonstrated than in the
sequence of “why’s” asked of a parent by a young child, culminating in an exas-
perated “Because that’s the way it is!” The process- intensive style of thinking is
uncomfortable to most people; it will not come easily to you. Perhaps you will
never feel at home with the abstraction of process- intensive thinking; if so, I fer-
vently pray you to get out of the way and pursue some other grail. 

All this translates to educational software design in a simple concept: the
educational content of your design lies in the algorithms you create, not the data
you store. Your students can’t interact with a fact or an image; they can interact
only with a process or an algorithm. Suppose, for example, that you are design-
ing a program about the European discovery of the New World. A data- intensive
approach would present this as little more than lists of discoverer’s names, dates
of discovery, and landfalls. Nina, Pinta, and Santa Maria; San Salvador and Cape
of Good Hope; de Gama, Vespucci, and Drake. Whoop-de-doo.

One process- intensive approach might focus on the mechanics of geograph-
ical discovery. This would require a sailing simulation. How should the student
allocate precious space in the hold for food and fresh water? How large a crew
should be taken? Is it better to take one big ship or several smaller ships? How
does one navigate in unknown seas with no means of determining longitude?
How does dead reckoning work? A simulation of this nature could be made sim-
ple for younger students and more complex for older students. The younger stu-
dents could skip the navigational problems, while older students could wrestle
with the problems of securing royal patronage.

Another process- intensive approach might focus on the motivations for dis-
covery. The simulation might place the student in charge of a European spice
trading company, competing with other companies in garnering the fabulous
wealth of spices. What is the fastest route to the Orient? How do the costs of
overland transport compare with those of sea transport? Would a route through
the Mediterranean, with transhipment at Suez, work better than the route
around Africa? Is there a Northwest Passage to the Orient?

For philosophers, why not set up a Socratic dialogue? Take any of Plato’s
dialogues, put it into the computer in simple hypertext form, and then add lots
of alternative responses and counter-responses to the existing material. Granted,
this is hard-wired branching, but let’s face it: mathematical equations for
Socratic thinking are still a long ways off—you’ll have to make do with simpler
algorithms. 

Political science has plenty of great opportunities for simulation; I wrote
Balance of Power, a geopolitical simulation, in 1984, when computers were

6490 AID Chapter 13  10/18/02  4:45 PM  Page 168



Advice for Specific Fields 169

much less powerful than they are today. The challenge here is to reduce com-
plex political thought to mathematical formulae. Most academics balk at such
heresy; they rightly object that any such mathematical expression would grossly
simplify the underlying idea. While this is true, the fact is that every freshman
poli-sci lecture is an oversimplification. No teacher has the time to present a rig-
orously correct explanation of the subject matter. We all simplify whenever we
teach, giving our students scaled-down versions of the truth. As they advance
through the material, we refine the presentation of the material at each level. So
the principle has long been established: we can simplify the presentation of the
material. Mathematical approaches are merely another form of simplification.
The only serious issue is whether the mathematical algorithm falls too far short
of the educational level being presented. 

Another objection is that many of the simpler equations make assumptions
that constitute hidden biases in the simulation. This is a non- issue; an easy solu-
tion is ready to hand. When I designed Balance of the Planet, an ecological sim-
ulation, I needed formulae for the effects of a great many ecological and
economic processes. I settled on simple linear equations with proportionality
constants. For example, my equation for radioactive pollution emerging from
nuclear power plants was simple:

radioactivity deaths = danger factor * number of nuclear plants

The danger factor was crucial to the simulation: if it were to be too small,
the simulation would unfairly reward a nuclear-heavy strategy; if it were to be
too high, it would bias the simulation in the other direction. My solution was to
allow the student to tinker with the danger factor, to adjust it upward or down-
ward. This, in turn, required the student to think carefully about the ideas
behind that number. This approach transformed a difficulty into a higher level
of education, for the student would naturally feel some obligation to research
the basis of a number before changing it. 

Understandably, these process- intensive approaches require a great deal of
work. But our task is to develop human minds, not stuff data onto a floppy disk.
Any idiot can spew information all over students—and a great many of them do.
If you want to develop students’ minds, you have to prepare materials that chal-
lenge and exercise what is most important about students’ humanness: their
ability to think. And the same thought applies to your own humanness: are you
a teacher or a talking book?

Let Them Play! 
All mammals are born with an instinct to learn by playing, and that instinct in
young humans is powerful, more powerful than the sex instinct in adult
humans. It is a testament to the towering failure of educational institutions that
they have been more successful in suppressing playful human curiosity than all
the repressive laws in the world have been in suppressing unseemly human sexu-
ality. Perhaps we should recruit teachers for vice squads. The human youngster
is blessed with a powerful drive to learn by playing. Damming that freshet of
energy and diverting it to passive information absorption is a stupid waste. Let
them play!

6490 AID Chapter 13  10/18/02  4:45 PM  Page 169



170 Chapter 13

“But play teaches the wrong things: jumping and running, not reading”
goes the objection. Only because the toys we give children teach the wrong
things. The skills we want them to learn—reading, arithmetic, biology, algebra,
economics—are all intrinsically interesting and fun. We should not treat them as
foul-tasting medicines that must be coated in thick layers of sugar to be palat-
able. Sesame Street has proven beyond any doubt that something as mundane and
dull as the alphabet can be enthusiastically embraced by children if it is pre-
sented in a playful fashion. The secret of Sesame Street is not in the cute puppets,
but in the fact that the letters of the alphabet are used rather than merely pre-
sented. They are used in songs, in words, in jokes, and in skits. They are held
up, handled, tossed about—played with. The audience engages in merely vicari-
ous play, but play is so powerful an educational strategy that even indirect play
works better than exposition. Imagine the effect if Big Bird & Company
marched into your home every day and engaged your kids in their routines.
There have been a number of attempts to accomplish just that with a computer,
but so far the quality and intensity of the play has fallen short of the original.
But it points us in the right direction.

The fundamental error of most educational software is the attempt to graft
unrelated play onto the subject material. The worst of these (widely recognized
as such) are the various arithmetic-teaching programs that reward correct
answers with snippets of videogame play. The designer’s task is to elicit the
intrinsically playful elements of the material. This is why you must abandon the
notion that your material consists of facts; there is nothing playful about a fact.
Every attempt to make facts fun will surely fail.

For example, the method foisted on me to learn multiplication was the tra-
ditional memorization of multiplication tables. I burned those tables into my
brain. I can still remember the special feeling that 7 x 8 = 56; perhaps my
teacher praised me specially that day. Yet I didn’t grasp the concept of multipli-
cation until graduate school, and I daresay most adults don’t ever grasp it. They
can do the calculation but never understand why.

Yet multiplication is a simple concept. If I had been taught by more playful,
process- intensive methods, such as playing with boxes and balls (this many boxes
with this many balls in each gives how many balls?), I would have gotten the idea
of multiplication at the direct experiential level necessary for understanding.
Moreover, in a playful environment, I would have more quickly recognized the
utility of arithmetic. I did not start to use arithmetic for anything other than
school until my late teens, about 13 years after I had started learning it.
Thirteen years is a long time for a kid to take something on an adult’s word. I
could have been given colored tiles and rectangular surfaces to cover with them;
the applications of multiplication would have become obvious. With a computer,
all sorts of wild geometric shapes are possible, and so all sorts of arithmetic
combinations become available.

Many years ago, Warren Robinett demonstrated the utility of play-based
educational software with a magnificent program called LogiGators. It taught
Boolean algebra to young children by allowing them to play with logical gates.

The one serious obstacle to a play-based approach is the difficulty of
process- intensive thinking. Most educators find the method so alien that they

6490 AID Chapter 13  10/18/02  4:45 PM  Page 170



Advice for Specific Fields 171

are at a complete loss at designing playful, interactive teaching materials. I ask
only that the brighter educational software designers master the technique and
make it part of their intellectual culture. Its superiority guarantees its eventual
success; social osmosis will accomplish what this book cannot.

Application Software Design

Application software covers a lot of ground: spreadsheets, word processors,
database managers, email programs, photo-retouching programs, CAD pro-
grams, painting programs, web browsing programs—all those programs that we
use to get some work done. 

The traditional manner by which we design such programs is a multi-step
process. First, some genius defines a need and comes up with a way to meet that
need with a computer. This leads to version 1.0 of Candidate Killer App. Most
of the time, it turns out to be a Wimp App, but sometimes we get a Fierce App,
and rarely we get an honest-to-gum Killer App. Then everybody else jumps on
the bandwagon and begins the process of design by feature accretion. Eventually
we end up with such a humongous heap of features that somebody comes out
with a Lite version that distills the discombobulated heap of features down to a
reasonably compact pile. Then the Lite version starts putting on weight, and the
process starts all over.

What Does the User Do? What Does the Computer Do?

My first suggestion is that the starting point for designing any application must
be to ask two questions: “What does the user do?” and “What does the com-
puter do?” The most general answers to these two questions are: “The user does
something deemed useful,” and “The computer does something computable.”
Your first task as a designer is to flesh out these questions, making each increas-
ingly specific until they match. Remember: you are acting as an ambassador
here, a mediator between two parties who think in completely different terms.
Your task is to get them onto common ground, even if they don’t know it. Here
is the sequence of answers to those questions for a word processor:

User does: Computer does:

Something useful Something computable

Writes a letter Converts letters into numbers

Enters text Organizes letters on the page

Evaluates resultant text Presents resultant text

A great many programs answer the second level of the first question with
“The user makes something,” usually a document of some kind: letter, report,
spreadsheet, presentation, photographic image, painted image, drawn image,
web page, and so on. Other programs, including a few of these same ones,
answer the question in another way: the user plucks useful tidbits of informa-
tion from a huge pile of data. Database programs do this, as do web browsers.

6490 AID Chapter 13  10/18/02  4:45 PM  Page 171



172 Chapter 13

The third generic answer to the question of what does the user do is that the
user communicates something; this is the function of email programs. The
fourth answer, rarer than the previous three, is provided by programs that con-
trol electrical devices, such as home-control programs that turn on and off
lights, heaters, and other household equipment: the user controls something.

The second-level answer for the second question is always the same: the
computer processes information. It calculates numbers and moves them around. 

Thus, all application programs permit the user to do one or more of these
four actions: make, find, communicate, or control. If you can’t clearly phrase
your design using one of these four verbs, then either you don’t have a clear
idea of what you’re trying to accomplish, or you have a truly revolutionary idea.
All application programs accomplish their user service by calculating numbers
and moving them around. 

The next step in the design process is to move to the third level of the ques-
tions. Can you describe in more detail what the user is making, finding, commu-
nicating, or controlling? Can you describe in general terms what kind of
numbers the computer will calculate and move around and roughly how it might
do so?

Suppose, for example, that a client comes to you wanting a program to help
her schedule her employees at a small factory in a developing country. The
employees are adherents to a religion that requires each one to perform devo-
tions at specific times of specific days, and each individual has different times
and days. Moreover, each individual has different skills with the different pieces
of machinery in the factory, so they’re not directly interchangeable. Last, the
client’s mix of orders is constantly changing. One week she wants to glue 10,000
hairpieces onto little furry toys; the next week it’s assembling 25,000 model air-
plane boxes. 

You interrogate the client, trying to determine the problem that most
bedevils her. What does the user do that is most tedious and time consuming?
Her answer is immediate and emphatic: with the constant mixing around of
employees and machinery, the poor factory manager is going crazy. So you have
your second-level user goal: the user wants to schedule her employees. The com-
puter will be calculating blocks of time, mixing and matching employees with
machinery and products. We’ll call this combination EMP.

User does: Computer does:

Something useful Something computable

Schedules employees Calculates EMP characteristics of blocks of time

Enters EMP data Combines time blocks into a working schedule

Evaluates resultant schedule Presents resultant schedule

This little list doesn’t solve any of your problems for you, but it gives you a
clearer idea of what the problems are. It specifies what the user does and what
the computer does. That’s a better start than most projects get.

Note that the fourth and final entries in the two lists fit together. The soft-
ware does something, and the user evaluates the result. We start at the most
general level for each of the two parties and bring them to convergence.

6490 AID Chapter 13  10/18/02  4:45 PM  Page 172



Advice for Specific Fields 173

Convergent Iteration

Interactive solutions to many problems tend to be convergent iterations as
opposed to the one-shot approaches of yesteryear. Before interactivity, your
scope for altering your work was limited; most alterations required hours of
tedium. Before spreadsheets, for example, most budgets were hand calculated
and horribly tedious to amend. This distorted the budgeting process. It was cru-
cial to get your budget estimates right on the first try—submitting changes after-
ward always angered the boss. Since changes were so difficult to make,
everybody overestimated budgetary needs; if the extra money turned out to be
unnecessary, it would be spent on departmental goodies. With interactive
spreadsheets, the budgeting process has become more incremental; alterations
can be integrated into the budget more smoothly. People still abuse the budget-
ing process (that’s politics), but they now have one less excuse for doing so.

Consider word processing in this light. What, precisely, is the value of this
software? I consider that its value springs from its acceleration of the naturally
iterative process of writing, which seldom comes out right on the first try. We
write down our sentence and then reread it to evaluate its fidelity to our inten-
tions. It’s never good enough, so we scratch out unsatisfactory words and
rewrite them. Sadly, the combination of hand, paper, and pencil is slow, and the
process of editing makes a confusing mess of the page. Word processing soft-
ware accelerates and neatens this process. We delete, rewrite, cut, and paste at
speeds that would astound our quill-using ancestors.

Thus, the computer’s contribution in word processing is quite trifling in
nature: it merely organizes the letters on the page for us. Two factors make this
trifling contribution so valuable: first, we put so many characters on the page
that keeping them all straight is a tedious task. Second, the linear nature of lan-
guage imbues the words at the beginning of the document with great conse-
quence: change “that jerk” to “our good friend” early on, and the position of
every letter afterward could well be changed. Recalculating all those positions
would be a huge and boring task for a human brain, but the computer eats this
kind of problem for breakfast.

Thus, in productivity applications the computer acts as a partner with the
human brain, tackling a narrow group of problems that the brain handles
slowly. The brain-amplifying effects of this are serendipitous benefits. For exam-
ple, the first spreadsheet, VisiCalc, was offered to Apple Computer to publish,
but the marketing experts at Apple rejected it. Its calculational abilities were
obvious but easily duplicated with a cheap calculator; why, then, would anybody
pay serious money for it? What the experts failed to foresee was the way that
instantaneous recalculation made financial calculations an interactive process.
Before spreadsheets, financial calculations of any size were too laborious to per-
mit much fiddling around; once the budget was hammered out, the cost of
recalculation forbade tinkering. With spreadsheets, managers could experiment
with a variety of financial options before committing to one. This experimenta-
tion—play—was unknown prior to 1981, but it is now universally applied. Here,
the benefit was the interactivity made possible by rapid calculation. 

The information loop in most application programs is based on hypothesis
testing. The user sets up (at high initial cost) a computer model of the intended

6490 AID Chapter 13  10/18/02  4:45 PM  Page 173



174 Chapter 13

document, budget, mailing list, or whatever. Then the user plays with the model:
Will this read better if I move this clause up front? Can I balance the budget if I
cut down on massages for the employees? If I sort for female customers in
Wisconsin, can I detect a pattern in their purchase decisions? The user tries out
many variations and closes in on the final result. It’s a convergent process in
which two agents, user and computer, alternately listen, think, and speak. Each
agent contributes the kind of thinking that it does best. The computer adds,
subtracts, multiplies, divides, ORs, ANDs, and EORs; the human exercises judg-
ment and applies human values in evaluating interim results.

Ergo, whatever task you contemplate, ask not how to computerize it; ask how
subtasks currently requiring great care can be replaced with iterative guesswork
that converges to the final solution. A diamond cutter gets just one stroke, and it
had better be right; wouldn’t it be better if he could use a computer to chip away
at that rough diamond, removing tiny bits until it was perfect? That’s not likely in
the foreseeable future, but the principle of iterative solution can be applied to a
great many tasks. Indeed, your software need not actually solve the user’s prob-
lem. It can still be useful if it merely provides a way of organizing the elements of
the problem so that the user can incrementally approach the solution. 

The iterative process breaks down into four components, two each for
human and computer; together, they form a more narrowly defined version of
the interactive loop:

1. The computer offers the user a carefully defined set of editing options that
permit all user-conceivable changes.

2. The user chooses from among the available set of editing verbs.

3. The computer applies the chosen edits and recalculates the state of the
document or product.

4. The user evaluates the result and determines how it falls short of the
desired ideal.

Let’s use the foreign factory manager to show how this might work. Until
now, the client has juggled schedules in her head. But with success came growth
and more employees; with so many employees, juggling schedules in her head
no longer works. It would be nice if the software could do the entire job for the
client, but there are too many intangible factors to put into algorithmic form.
She can’t have these two employees working on the same machine at the same
time; they’re both sloppy, and together they’re bound to screw up something.
She would prefer to have this employee at work when she’s around, because he
gives her good reports on how things are going on the shop floor. No computer
could ever handle such intangibles—but we don’t need the software to get all the
way to the solution. We need it only to get close enough that these intangible
factors are the only ones that the client needs to worry about.

The software should allow the client to specify the basic factors—constraints
on each employee’s schedule, ability of each employee to use each machine,
machinery and time requirements for each product manufactured, and so
forth—and then view the resulting schedule. Presumably, the client will look
over the schedule for a moment and then mutter “that won’t do; those three

6490 AID Chapter 13  10/18/02  4:45 PM  Page 174



Advice for Specific Fields 175

employees all need a lot of supervision, so I can’t have all three here at the same
time.” So the client rearranges the schedule slightly and then observes the
result. The computer handles the busywork of laying out the schedule, while the
user handles the high-level decisions and the special cases, iterating the process
until convergence yields the ideal schedule.

We normally think of computer software as tackling problems with mathe-
matically definable results, but in fact the most interesting applications are those
that permit maximum expression of human creativity. A spreadsheet, for exam-
ple, may indeed be seen from the computer’s point of view as nothing more
than a vast collection of straightforward calculations, but from the user’s point
of view, a great many delicate judgments are built into a spreadsheet. A word
processor does nothing more than arrange letters on a page, but the user sweats
the composition. A painting or drawing program provides the user with the
means to draw neat, clean lines, circles, and other image components, but the
human creativity at work is far the more important. 

Thus, there remain two broad strategies for advancing applications soft-
ware. The first is the creation of editing verbs that more closely approximate the
user’s creative impulses. Painting programs, for example, could offer us a
higher-level set of drawing primitives, such as human faces and bodies. The user
in such a case might be able to edit the face by specifying changes that make the
face longer, the hair bushier, or the skin older, for example. Word processing
programs might be able to make a sentence more assertive, tighter, or more
diplomatic. Photo-manipulation programs might be able to identify image com-
ponents and accentuate, enhance, or diminish them. “Soften the pig, shrink
him, and move him further back in the background” would be a perfectly rea-
sonable command in such futuristic programs. 

The other broad strategy for advancing application design is the tackling of
problems that are at present beyond the reach of simple editing and recalcula-
tion. Imagine, for example, a comics drawing program that included in its verb
set drawing primitives more closely attuned to the various styles of comics art.
The user might then specify his desire for a pretty girl sidekick and then adjust
her appearance with commands such as “prettier but less sexy,” “spunkier,” or
“more lithe.” A great range of human creative activities demand much tedious
effort to realize small creative goals; if the tedium can be separated from the
creative effort, therein lies a potential for application software.

And that’s all there is to application software design <riotous laughter>.

Website Design

Let’s start by assessing the effectiveness of the Web as an interactive medium.
Specifically, how well can it listen, think, and speak?

The Web’s ears are adequate but unimpressive. Its primary mode of listen-
ing is through hotspots and, to a lesser extent, through typing and a few sup-
porting gadgets such as pop-up menus. Hotspots are certainly the best simple,
general-purpose input scheme. You can crowd thousands of ‘em into a single
web page, or you can have just one. Moreover, the size of a page’s hotspot vocab-
ulary is (or should be) instantly obvious, which helps the user feel confident

6490 AID Chapter 13  10/18/02  4:45 PM  Page 175



176 Chapter 13

about his choices. But hotspots are weak with sequential or compound com-
mands. If our user wants to see the blue portrait of an old woman painted by
Picasso sometime during 1933, he will have to navigate through a maze of sin-
gle-query pages to get what he wants. That’s slow and clumsy. Fortunately, tex-
tual input gives us some relief; a perfect example is provided by any of the
various search engines.

The Web’s fatal weakness lies in thinking. HTML is a completely inadequate
language for any kind of thinking. Fortunately, Java provides us with a good pro-
cessing language, given the constraints of platform independence and security.
So far, however, use of Java on the Web seems to have fallen far short of its
potential, possibly because many Java interpreters remain unreliable.

Last, we turn to the area in which the Web shines brightest: speaking. My
oh my, how the Web can speak! It’s got graphics, it’s got animation, it’s got
sound, music, video—even voice telephony! The only comment I can make about
the speaking skills of the Web is: enough, already! The stuff we already have is
great, fabulous, wonderful, but there remain enormous problems in other areas,
especially thinking. All of our efforts should be directed at equipping the Web
with bigger brains and bigger ears. The efforts we put into giving it a bigger
mouth are almost pointless now. It’s like putting an even more powerful engine
into a rocket-propelled car with six- inch wheels.

One aspect of web speaking, though, remains unsatisfactory: bandwidth. It’s
difficult to splatter wonderful images and sounds all over a user who sits at the
far end of a slow and narrow pipe. 

Strategies for Improving the Web

The main improvement that we all hope for is a dramatic increase in bandwidth.
There’s no question that users operating at 1 Mbps experience a completely dif-
ferent web than those of us who struggle with 56K modems that actually deliver
an average of 20 Kbps. While higher bandwidths are steadily penetrating the
consumer market, the sad fact is that the slow-modem users will remain, at the
very least, a significant minority for years to come. (By the way, you should be
careful interpreting the available data. While most regular users of the web are
coming in at speeds in excess of 256 Kbps, that sample is biased by usage; most
of the slower users don’t spend much time on the Web because it’s so damn
slow. The actual market may be pretty fast, but the potential market is much
slower.) Accordingly, website designers will not be able to assume high band-
widths; websites must still be designed to operate adequately at low bandwidths.

But there’s another strategy for improving the value of a website: make it
smarter. The Web’s biggest problem just now is that it is viewed more like a
library than a playground. Most users are on the Web to gather information,
but our notions of gathering information are still dominated by the concept of
the encyclopedia or the sales catalog. And by golly, if we think of the Web that
way, that’s what it will become: a musty old digitized library. Yuck!

It’s surprising how deeply this attitude insinuates all thinking about the
web. Most of the central features of most websites (hyperlinks, search facilities,
and so on) are designed to help the user find things faster. This all fits neatly
with the current grain of the Web: it talks volubly, listens weakly, and thinks like

6490 AID Chapter 13  10/18/02  4:45 PM  Page 176



Advice for Specific Fields 177

a worm. With this combination of features, people design websites that talk,
talk, talk, listen a little, and never think. This is not interactivity! If we want to
take advantage of the potential, it is imperative to bolster the Web’s weakest
link: its thinking. 

Consider, for example, how much more effective the web would be if I
could find exactly what I want on my first attempt at searching. I usually must
examine 20 different pages before I zero in on what I want; at 20 seconds per
page, that’s six minutes to do one search! If I could always get exactly what I
want on the first attempt, then I would experience an effective throughput 20
times greater than what I now have—roughly equivalent to 400 Kbps over a stan-
dard phone line! To get exactly what I want takes more intelligence from the
web, not more bandwidth. 

To demonstrate this problem, I went searching on the Web for trial records
from colonial America. When I entered the words “trial records from colonial
America” (not grouped into a single search string), I got 6,700 hits, 14,400 hits,
and 34 million hits using three different search engines. The best hits on these
three engines had the following text:

“Salem witch trial records, colonial America”
“Colonial America Lecture Hall and Chatroom. Western Canon”
“Salem Witch Trial Hysteria; Settlements, ships . . . New England Pilgrim
Criminal Records. Religion in America. Beginnings to . . . US History—Colonial
Cycle First . . .”

Now, suppose that the engines had been as smart as a human being, but
didn’t know anything specific about trial records from colonial America. It
would then search using a variety of appositives: {trial, court, criminal}
{records, documents, transcripts} from {colonial America, American colonies,
early America}. That human would also know to group adjectives with the
nouns they modify (for example, “trial” with “records” and “colonial” with
“America”). These concepts are simple enough to be computable, so why haven’t
they been implemented yet? (Perhaps they have; if I had a faster connection,
perhaps I might have found such an engine.)

Here’s another way to look at it: right now, Google boasts that it spans
2,073,418,204 pages of webspace. That’s a lot of pages, but suppose that you saw
a game on a store shelf boasting that it offered 2 billion moves. Would you be
impressed? What if you saw an ad for a word processor hyping the 2 billion dif-
ferent documents that it could produce? Or a spreadsheet that could handle 2
billion different budgets? I certainly wouldn’t be impressed by any of these prod-
ucts; I would expect to be able to get uncounted zillions of game moves, docu-
ments, or budgets out of my software. The count of web pages looks impressive
only when the pages are hand-built. But wouldn’t you prefer a web that permit-
ted you to get a page custom designed to give you precisely what you want,
rather than merely sample a great many pages that might come close?

This next major transformation due for the Web will be the transition from
fixed pages to custom-built pages. This transformation is already underway;
whenever you use a search engine, the results are presented in a custom-built
page. Why aren’t all pages on the Web custom built? Rather than crawl through
a pile of pages, why can’t the user simply say what she wants and get it?

6490 AID Chapter 13  10/18/02  4:45 PM  Page 177



178 Chapter 13

The reason, of course, is that you can’t do any processing in HTML; it’s a
page description language, not a processing language. If you want to do any pro-
cessing, you have to use something else—Java is the most likely candidate,
although several other methods have been developed. The problem is, too few
people design websites to use Java, largely because Java is too daunting for most
website designers to tackle. And so the Web marches onward to a dead exposi-
tory future. 

The first question to ask yourself in designing a website is not “What infor-
mation do I want to provide to my user?” It is instead “What do I want my user
to be able to do?” There are plenty of situations where the user wants to get
something, most likely information, and for these you have a large palette of
well-developed tools. However, most of those tools involve little in the way of
processing. I believe that search systems on the web must and will evolve toward
greater process intensity.

One of the leading innovators in this direction is Amazon.com. Starting
with a simple listing of books, Amazon has added new searching dimensions.
Having found a book, the user can view other books by the same author, other
books purchased by purchasers of this book, “Top 10” lists of similar books, and
so on. The end result is the best single source of information about books on
any topic. 

But you should also consider whether the user can make anything or control
anything using your website. There are plenty of precursors to this goal on the
web. Online games are certainly not about getting information; they enable their
users to control something (a game). There are also a few sites that permit a user
to assemble some pretty email out of standardized components and send it to a
friend. These, I think, offer us the best inklings as to the future of the Web. 

For example, some websites already permit the user to assemble a computer
using a base platform and custom options. There are plenty of products that
come with gobs of confusing options, and the retail clerks in the stores can
never provide a clear idea of exactly how all those options interact. A well-
designed website could permit you to explore all the variations and choose the
best combination for your needs and budget, knowing exactly what you are get-
ting and exactly why.

A related possibility is the creation, not merely the assembly, of custom
products. If you want a customized mouse pad with your photograph on it,
wouldn’t it be nice to simply provide the image as part of your order on the
website? How about supplying your body measurements to a clothier, specifying
which dress or shirt design you’d like made? Almost any product can be usefully
customized. Why not provide the customer’s name and driver’s license number
on any small, expensive item susceptible to theft? Put it on a hologram that can-
not be modified, only noticeably removed. Microscopically etch the same infor-
mation on any piece of jewelry. Replace those damn designer labels on most
clothing with the customer’s name on a snazzy label; at the very least this would
eliminate laundry problems.

Why not give consumers access to expensive equipment through the Web?
This is already done in many industries: circuit board designers can submit

6490 AID Chapter 13  10/18/02  4:45 PM  Page 178



Advice for Specific Fields 179

their designs to a board maker who runs them off and ships them. Why not
extend the concept to the consumer level? Wouldn’t home handymen be over-
joyed to find a website that custom manufactures little metal widgets necessary
to fix old fixtures? If the step from web-delivered specifications to machine
requires no human intervention, it would be cheap enough to work. A great
many hobbies, such as woodworking, frustrate their aficionados with those cru-
cial components that simply can’t be made with home tools. What if a website
offered hobbyists the chance to get that part with the 0.001- inch tolerance, so
that the hobbyist could concentrate on the rest of the work? How about a cof-
fee retailer who invites you to specify any mix of any beans? A chair manufac-
turer who uses your body measurements to make an ideal computer chair? A
game whose monsters can be tailored to look like your boss or brother- in-law?
A toy that looks just like a child’s relative or includes the names of the family
members in its spoken vocabulary?

These are examples of the user making something on a website. They often
require extensive specifications; the website itself should include the software
that the user designs her product with. This requires a lot more processing—but
that’s the whole point: if you add more processing, you get better interactivity
and greater opportunities.

Now let’s turn to the possibility of letting the user control something on the
Web. As I mentioned earlier, online games do this already. But there are plenty
of other processes that a user could operate via the Web. Some sites let a user
create an imaginary portfolio of stocks and then manage it online, watching how
the portfolio appreciates or depreciates. This would certainly help people under-
stand the market and prepare themselves for real investments and thereby make
them more willing to invest real money—a worthwhile feature for any online
stock brokering operation.

Simulations are the most common form of “running something.” It seems a
shame that the Web has so much educational information and so little educa-
tional simulation; it’s rather like making an educational video of a book, turning
the page every few moments. Some of the material on the web is unquestionably
static information: prices for Beanie Babies, temperatures in Cleveland, and so
forth. But much of the educational material could benefit from heavier reliance
on simulation.

Browsing

Last, we come to the most common function on the Web: browsing. I am
pleased to see how rapidly we have developed design standards for hyperlinks
on the web. Despite the impressive progress, we still have a long way to go with
hyperlink design at websites; we all have great horror stories of websites with an
Alice- in-Wonderland feel to them.

The nature of a website changes as it grows. Almost all websites grow by
accretion: a svelte little ten-page site gets more and more pages pasted onto it
until it’s a sumo-site. This is dangerous, because the hyperlinking mechanics of a
site shift as it grows. Typically, websites grow by adding more leaves and estab-
lishing a more elaborate tree structure. 

6490 AID Chapter 13  10/18/02  4:45 PM  Page 179



180 Chapter 13

For example, suppose that your user wants to learn about Thomas
Jefferson. The user goes to a history website and there finds a page on
American history, with the following hyperlinks:
Colonial | Revolutionary | Presidents | Civil War | Westward Expansion |
Robber Barons

Thomas Jefferson would belong in either the Revolutionary or the
Presidents link, and conceivably, even the Westward Expansion link. Which to
choose? The correct answer should be: any of these three, because he fits them
all. Unfortunately, most websites are designed as trees, with Jefferson pigeon-
holed into whichever box the designer prefers. This ensures that some of the
users will go down the wrong path, search fruitlessly in its environs, and then
retrace their steps to the higher-level link before chancing upon the correct
link—an unnecessarily long and frustrating path.

There is absolutely no reason why information at a website must be organized
in a tree structure. There’s nothing about the nature of computers, the technology
of the Web, or the limitations of HTML that imposes a tree structure upon
designers. That tree structure is a figment that we impose upon our designs.
“Branching thinking” is to website design what “linear thinking” is to creativity.

Branching design relies on a single type of hyperlink: the vertical link.
Another common link is the express uplink, which jumps directly to one of the
top-level branchpoints on the website:

Home | Site Map | Customer Service | Contact Us | Catalog

What we need more of is the crosslink, which jumps horizontally across the
tree, fuzzying the branching structure so that it looks more netlike. In other
words, the history website just described would have links to Thomas Jefferson
from both its Revolutionary and its Presidents pages. Thus, an important rule to
remember:

As a website grows, the percentage of crosslinks must increase.

Alan Cooper in About Face makes an important point: the designer must not
impose the implementation model onto the user model. In other words, don’t
let the way you think about designing it affect the way that it’s presented to the
user. Most websites are designed backwards: organized by available information
rather than anticipated user questions. I’m sure that it makes one proud to
organize all sorts of information into a tidy little tree, but users seek answers,
not trees. Start with the user questions that you want to answer and design for-
ward from there.

The big idea here is that the information you present on the website, be it
commercial, academic, or personal, is not merely the content of the individual
pages. Information exists in a structure, and the way you structure the informa-
tion on the website is just as important a component of the message of the site
as the manifest content of the pages. In other words, the hyperlinks you create
are just as much a part of the delivered content of your site as the images and

6490 AID Chapter 13  10/18/02  4:45 PM  Page 180



Advice for Specific Fields 181

text. The universe is not a tree with zillions of independent leaves of fact—it’s a
unified whole. As Galileo observed, we can see the entire universe in a glass of
wine. The light reflecting off the glass, refracting and sparkling inside the wine,
the thermal convection patterns in the liquid, the mechanical sloshing of the
wine, the chemical interactions with the air—it’s all right there for us to see.
Your website must capture the unity of its content or it’s nothing more than a
useless pile of pages.

Sadly, this grander style of thinking still escapes many designers. They seem
to think of themselves as “page designers” rather than “website designers.”
There are zillions of beautiful pages out there in gallimaufried sites. Would that
site design attracted as much attention as page design!

Last Thoughts

You can’t interact with information; it’s dead. Information can’t listen, and it
can’t think; all it can do is speak. Therefore, if you set out to provide informa-
tion, then you have guaranteed that your website will be dead and noninterac-
tive. You are not providing information; you are answering questions. The
distinction is crucial; if information were the object of the user’s search, then
she would simply download your entire website. The more info the better—right?
But that’s not what happens. Users don’t want to have gigabytes of spurious
information sprayed all over them. Each one wants a small amount of specific
information. Expository media provide information, which is one-size-fits-all in
character—and normally too much to be useful. The web allows us to give
answers, not merely information, but an answer must be tailored to the user.
You’re a tailor, not a cloth maker. You are not providing information; you are
rendering a service. The distinction between providing information and answer-
ing questions is the difference between a book and an answer. You possess an
ocean of information, but your user seeks only a sip.

Thus, you should think of your site as “Mr. Know-It-All helps you find the
answer to your question!” rather than “It’s all here for you to find—somewhere.”
A website is not a dead stack of paper; it is an interacting agent that can serve
the user. You are not designing a tree structure; you are designing an expert
who listens and thinks. The next big step in web evolution will be the integra-
tion of greater processing into websites. Java is the most likely means by which
this will happen. Website designers who can’t work in Java (or whatever replaces
it) are doomed to become page designers.

The Web is the most dynamic design enterprise in human history. No other
medium can match its mass of experimentation, its speed of communication, or
its ease of modification. The umpty-zillion pages out there provide us with a
gene pool of staggering size, loaded with all sorts of truly odd ideas. All of those
odd ideas are like genetic mutations; even though most of them are junk, occa-
sionally a good idea comes along, and when that happens, other designers can
discover and spread word of that idea in a matter of days, and they can copy it
in a matter of weeks. And so the cycle of design accelerates. Perhaps the web

6490 AID Chapter 13  10/18/02  4:45 PM  Page 181



182 Chapter 13

Game designers should explore other dimensions of thinking, in particular verbal
reasoning and social reasoning. Educational software designers should concentrate on
process, simulation, and play. Application designers should seek a convergent process
by which the user makes, finds, communicates, or controls something. Website
designers should get more processing into their sites by applying Java.

has reached a critical mass that allows us to dispense with deliberate design; per-
haps we need merely permit random mimetic mutations coupled with our own
selection to advance its evolution. Wouldn’t it be ironic if this pinnacle of
human design advanced beyond deliberated human design?

6490 AID Chapter 13  10/18/02  4:45 PM  Page 182



14
D E D I C A T E D  D E V I C E S

One of the fascinating aspects of technological devel-
opment is the way in which steady incremental

improvements in a technology can occasionally alter
the technology so much as to yield sudden leaps.

Civilization itself arose from such a leap; people had been prac-
ticing small-scale agriculture for thousands of years, but at a cer-
tain point the efficiencies of the technology became great
enough to permit the high population densities necessary for
urbanization. From there, it was only a hop, skip, and a jump to
standing-room-only subways.

Computer technology is just now taking this kind of leap, albeit a much less
significant one. The price of raw computing power—CPUs and RAM—has fallen
far enough that we can now discard the old notion of a single, mighty CPU sur-
rounded by a host of peripherals performing a host of tasks. Instead, we can
now build a host of smaller machines, each one dedicated to a particular task.
Cell phones are one such example—lurking somewhere in the innards of your
phone, there lies a microprocessor with as much horsepower as graced personal
computers not so long ago.

6490 AID Chapter 14  10/18/02  4:47 PM  Page 183



184 Chapter 14

There will likely be two broad, overlapping classes of dedicated devices: sec-
ondary devices, meant to augment conventional PCs, and independent devices,
meant to perform some standard function requiring little interaction with a PC.
We already have plenty of products in both classes. Digital cameras and portable
PIMs (for example, the Palm Pilot) are used in conjunction with a PC. We also
have plenty of independent dedicated devices, such as calculators, thermostats,
and appliance control processors. Dedicated device technology has been around
for a long time. Indeed, the kick-start for the whole revolution was the Intel 4004
processor chip, designed as a processor to be embedded in an appliance. It grew
into the 8008, a general-purpose CPU. So dedicated device processing actually
predates personal computing. What’s new is the likely efflorescence of this tech-
nology in the next decade, brought about by smarter and cheaper processing.

The two broad classes of dedicated devices will likely have correspondingly
different user bases. The secondary devices will cater to PC users and so will
likely sport a more complex interaction. The independent devices, on the other
hand, will perform some of the functions of the PC for less technically astute
users, and for these purposes, replacing the PC. More important, they will prob-
ably create entirely new functions.

General Comments on Dedicated Device Design

We can all agree that VCRs, irrigation timers, thermostats, car stereos, and myr-
iad other devices are often idiotically designed these days, and much improve-
ment is required. Part of the problem is the way in which complexity snuck up
on us. In the old days, a thermostat was a simple device: you set the dial to the
temperature you wanted, and that was that. Nowadays, thermostats are much
more complex: they often have a daytime temperature and a nighttime tempera-
ture, with different schedules for weekdays and weekends. But the interaction
with the user has not kept pace with the capabilities of the hardware. The same
can be said for most other dedicated devices. Hence, the first requirement is
that designers of such devices recognize the need for increased attention to the
difficulty of using the damn things.

Some designers object that cost considerations force them to rely on such
primitive user interfaces. But allow me to present you with an interesting way of
viewing the cost trade-off. Suppose that you are the chief designer for Dandy
Doodads, Inc., and you are finally souping up your flagship product, the Dandy
Doodad, with a built- in computer chip. This chip has plenty of horsepower, so
you design in all the clever features you’ve always wanted to put in. You’re feel-
ing quite proud of yourself until you realize that one of your cleverest new fea-
tures, the Doodad demagnetizing feature, for some odd reason simply cannot be
addressed through your user interface. In other words, you can demagnetize like
crazy, but it’s impossible to provide the user with a means of ordering the
Doodad to demagnetize. Sadly, you disengage the feature, kicking yourself for
the extra $2 you spent on the hardware to enable this feature. But what the hell,
you might as well leave it inside the Doodad—it would seriously delay the project
to design it out. The user, of course, has no way of activating the feature or even

6490 AID Chapter 14  10/18/02  4:47 PM  Page 184



Dedicated Devices 185

knowing of its existence. The value of the demagnetizing feature to your cus-
tomer is precisely zero.

Now suppose that you have come up with a means to permit your user to
activate the demagnetizer, but it’s quite complicated. The user must carry out a
whole series of actions in precise order and with perfect timing. It’s all
explained in the manual, but, truth be told, few people can execute the com-
mand properly. The value of the demagnetizing feature to your customer has
risen above zero, but is still low.

Now suppose that you’ve cleaned up the user interface so that a normal per-
son can use the feature, but there’s still a lengthy manual to read before he can
understand the process. The value of the demagnetizing feature to your cus-
tomer has increased slightly.

Last, suppose that you’ve come up with the ideal solution: there is one
magic button on your Doodad that says “Demagnetize,” and pushing that button
takes care of everything. Now the value of the demagnetizing feature to your
customer has finally reached its full potential.

In other words, a feature that is not understood is less useful than a feature
that is fully understood. Spending money on features is worthwhile only if the
user can readily access those features. It would have been smarter to spend
some of the money allocated to the demagnetizing hardware for user interface
hardware. Money you spend on interface hardware is justifiable because it
makes all the expensive internal stuff more readily available to the user. If, from
the user’s point of view, that feature is not accessible, then as far as he is con-
cerned, the feature doesn’t exist.

RTFM

The software industry has slowly come around to the realization that Read The
Manual—RTFM—is no excuse for bad user interface design. Yet designers of
dedicated devices seem to be far behind the software people in this regard.
This is doubly pernicious; user manuals for software are usually stored within
arm’s reach of the computer, but user manuals for hardware are quickly lost or,
if saved, squirreled away in some cranny far from the user at her moment of
need. As a close-to-home example, I challenge you to locate the user manual
for your watch.

Indeed, getting users to read the manual in the first place is asking a lot. If
people really were that conscientious, we wouldn’t need seat belts, air bags, ban-
isters, tempered glass, smoke alarms, and safety goggles. But people aren’t con-
scientious; they are impatient, cocky, and lazy. They are also your livelihood. So
are you going to engage in wishful thinking, or are you going to design a prod-
uct for the actual, paying human beings who will not read your manual?

A simple measure of the quality of any design is the size of the user manual.
The perfect design requires no user manual whatsoever; its function is so obvi-
ous that the user need not study anything. If you have to explain how to use it,
then you haven’t done a good enough job.

So now let’s consider each of the three steps in interactivity as they pertain
to dedicated devices.

6490 AID Chapter 14  10/18/02  4:47 PM  Page 185



186 Chapter 14

Speaking

Dedicated devices don’t boast a megapixel display with 32 bits of color; in most
cases, the best you can design with is a liquid-crystal display (LCD). Most dedi-
cated devices have too little display capability. It is insane to save a dollar of
manufacturing cost by imposing egregious contractions and undecipherable
labels on the user. One of these days, we’ll have a juicy lawsuit wherein some
user interpreted DGR, meaning “danger,” as “degrease,” thereby igniting a fire
that burned down the house and put him in the hospital, etc. And when we do,
the blame will fall squarely on the idiot who tried to save a few cents on the
LCD. Do you want to be that idiot?

The machine age has cursed us with a cacophony of contractions; while each
one individually might make sense, the overall effect is stupefying. Remember
that human language has redundancy built into it. That’s because people can mis-
read anything. I have misread the “SinkMaster” label for a garbage disposal as
“StinkMaster”; I read a billboard for an air show, “Wings Over Moffett,” as
“Winos Over Moffet.” Imagine what I could do with contractions!

So don’t push the contractions too hard. In general, you should contract
only a few of your labels; if more than 25 percent are contracted, you’re pushing
too hard. Follow the standard conventions for contractions; don’t get creative. If
you use the displayed label anywhere else in the product materials (manual,
attached short instructions), use both the full term and its contraction in quota-
tion marks. If possible, augment the contraction with additional information to
help the user guess its meaning. Perhaps an icon might prove useful—but be
careful, because icons can easily mislead if you use them too heavily. Use an icon
only if there’s an obvious and natural candidate.

Now for some specifics on the LCD to use. First, you’re better off spending
more money on a bigger black-and-white LCD than on a color LCD panel; at
small pixel counts, the eye is more adept at spatial resolution than color resolu-
tion. Second, stuff in the biggest LCD you can afford; the bigger the LCD, the
more you can say to your user. Most dedicated devices are penny-wise and
pound foolish with regard to LCD use; they go to great lengths to minimize
LCD cost and then pay extra costs to make the device usable with such a tiny
LCD. The primary cost of an LCD display is the pixel addressing circuitry; dou-
bling the size of the array adds one address line. Overall size can be an impor-
tant consideration in some applications. The pixels themselves cost next to
nothing; if you’re going to have a display, why not make it as big as possible?

For example, my cell phone sports an LCD with 2,048 pixels. This may
seem like a great many, but in fact it’s minuscule—a single icon on my computer
screen takes up 1,024 pixels, and it’s in 24-bit color, while LCDs are single-bit
black and white. The manual for this cell phone is over 100 pages long and
probably cost several dollars to print. By doubling the size of the LCD, the user
interface could have been simplified, reducing the size of the manual and its
associated printing costs. While the money saved on the manual would not
cover the increased cost of the larger LCD, the reduction in customer service
costs very likely would.

My cell phone boasts so many features that it requires nearly 60 different
screens. No customer can reasonably be expected to memorize all those fea-

6490 AID Chapter 14  10/18/02  4:47 PM  Page 186



Dedicated Devices 187

tures. The designers have succeeded admirably in reducing the size of the cell
phone; unfortunately, one must lug around a large and heavy manual if one
wishes to actually use the cell phone.

Take full advantage of the periphery of the LCD. You can hard-print labels
on the surrounding plastic that the LCD can point to with just a few pixels; the
higher contrast of the plastic allows you to use smaller print. I have mixed feel-
ings about the use of fixed internal LCD labels. These are regions of the LCD
that are permanently set to display a particular pattern or message; thus, a sin-
gle bit of information (such as “battery low”) takes up a lot of screen space.
Better to move such messages to the periphery and point to them with a blink-
ing arrow.

Animation should be used only for annunciators, never for conveying mean-
ing. While animation is powerful and expressive, it is already used and under-
stood worldwide as an annunciator; do not overburden animation with
additional uses. Blinking should be reserved for telling the user that something
is wrong or for highlighting a selected item.

Sound output can be provided with simple piezoelectric buzzers. Single-
tone buzzers have outlived their usefulness; only the simplest of applications can
benefit from a single-tone buzzer. Moreover, the inclusion of small CPUs inside
dedicated devices makes it easy to use more complex waveforms. 

Sound can be used for three functions: acknowledgment, immediate feed-
back, and annunciation. Too few dedicated devices provide acknowledgment of
user input; given the fact that many buttons and switches on dedicated devices
are often recessed to prevent inadvertent actuation, it is all the more important
to acknowledge deliberate button presses. I believe that every device with such
protected switches should provide a short, muted beep to acknowledge every
user input.

Given the low cost of LEDs and LCDs, I have difficulty imagining situations
in which a designer would want to use sound for immediate feedback. Talking to
a user with custom beeps and boops seems foolish—but I have seen some devices
that attempt exactly that. About the only such beep that seems to work here is
the two-tone “uh-oh” beep that indicates a problem.

The primary use of sound output is for annunciation: grabbing the user’s
attention when she might be attending to something else. The problem these
days is that we live in an over-annunciated world; the classic example of this is
the tizzy of activity set off by a single cell phone ringing in a crowded restaurant.
Because your dedicated device must coexist with a thousand others, you must
work harder to make your annunciations clear and distinct. You should certainly
set the volume, pitch, and repetition rate of your annunciation sound to match
the urgency of the situation you wish to communicate. Only the must urgent sit-
uations should be announced with high volume, high pitch, and rapidly repeat-
ing sounds; scale these down for less pressing matters. 

The past few years have seen the increasing use of iconic sounds. We signal
our car to identify itself; it responds with a distinctive whoop-whoop sound that
we have all come to recognize. Cell phones chirp, cars tinkle their warning of
lights left on—and on and on it goes. I have mixed feelings about such iconic
sounds. The human ear’s talent for recognizing a wide array of sounds gives us a
huge palette for iconic sounds; however, there’s plenty of potential for a digital

6490 AID Chapter 14  10/18/02  4:47 PM  Page 187



188 Chapter 14

Tower of Babel. Designers should differentiate between public annunciations,
which might be presented in an auditory environment containing similar annun-
ciations, and private annunciations, which are safely emitted in a confined audi-
tory environment. Public annunciation must be in some way customized to the
user; this eliminates the cell-phone- in-the-restaurant problem. An easy way to
customize an iconic sound is to append a second sound to it. Private annuncia-
tions are less problematic, but the designer should still strive for a distinctive
iconic sound.

A better solution is voice output, which comes in two styles: prerecorded
and synthesized. The former is best used with devices requiring limited amounts
of annunciation. Certainly automobile internal computers could benefit from
prerecorded voice output to handle the many warnings currently presented by a
confusing variety of bongs, beeps, and buzzes. As the need to announce events
and situations increases, these iconic sounds will lose meaning from their over-
abundance, and designers will have no choice but to use voice output. 

If the device must announce a great variety of messages, voice synthesis is
required. Voice synthesis has high initial overhead, but once you’ve set up the
ROM with the phoneme data, you can control it with short strings of
phoneme tokens.

Thinking

Thinking is just as important a component of interaction as speaking; even sim-
ple devices can benefit from a modicum of intelligence. Most dedicated devices
offer as their primary function something that is not intrinsically a computing
task, so the algorithms you use will not be the primary delivered value of your
device. Instead, you will use thinking to head off or straighten out points of con-
fusion with your user. A thermostat, for example, could benefit from intelli-
gence by knowing that certain patterns of use are absurd. You don’t put a
cooling cycle immediately after a heating cycle; you don’t have heating cycles less
than ten minutes long. Indeed, there are lots of patterns of use that are unlikely.
Most designers take a black-and-white approach to user control: some things are
utterly impossible, and everything else is possible. But with some intelligence on
the part of the device, you can provide more discrimination here. You can judge
various patterns of use as either impossible, unlikely, or reasonable. Thus, the
user who wants to turn up the heat at 3:00 A.M. can still do so, but the thermo-
stat might balk and require him to assert himself first.

Listening

As with conventional PCs, listening is the most difficult design challenge with
dedicated devices. The number of buttons on our devices has steadily expanded
until now we are faced with absurd equipment. The remote control for my
TV/VCR has 46 buttons; 8 of those buttons get 99 percent of my use, and 18 I
have never used. This is why I feel that LCDs are a better approach for now.
Most of those unused buttons could be grouped in a series of LCD screens that
would present the information in a more organized fashion. However, arranging
layered screens demands much care; the worst offenders here are cell phones

6490 AID Chapter 14  10/18/02  4:47 PM  Page 188



Dedicated Devices 189

and GPS devices. Befuddled users often randomly browse through displays until
they find what they are seeking.

You could also have buttons around the periphery of the LCD that take on
different meanings (defined by the LCD label) in different contexts. Remember,
at any given moment, a user’s needs are narrow; presenting her with unusable
buttons is bad form. However, your organization must be crystal clear to the
user; otherwise she’ll get mad trying to figure out how to get the damn thing to
give her access to a needed command. 

Touch-screen LCDs are excellent devices; only their expense prevents me from
recommending them wholeheartedly. Nevertheless, if you have a complicated input
structure, you might find the touch-sensitive display worth the expense.

Mechanical buttons must provide feedback to the user. Tactile feedback
(you can feel the button move as you press it) is always best. However, some
devices require membrane switches that are flat and sealed against dust and
water. Rugged they are; usable they aren’t. Without any feedback, the user never
knows how hard to press. I once had a thermostat whose switches required sev-
eral pounds of force to actuate; I hated that thermostat. Always include a beep
response to presses on such buttons.

Many dedicated devices use paged menus to provide complex input options.
The user does not see the entire menu at once; the menu must be entered, and
the user must scroll through the menu options, one item per page. While this
scheme is serviceable, it is also clumsy and likely to confuse the user. If the user
does not think of his goal in the same terms used by the designer, searching
through all the menus becomes a cumbersome task. This provides another argu-
ment for larger LCDs; if you can fit the entire menu on a single screen, the full
benefits of menuing become available.

Using larger LCDs requires the use of cursors, and here arises a tricky prob-
lem: should the cursor float, hop, or jump? Computer mice float; the cursor can
move smoothly from any position to any other position. Unfortunately, this
requires something like a mouse to implement well; most dedicated devices can’t
have mice. A hopping cursor moves in small, regular steps under the control of
four cursor keys. It can go anywhere on the screen. A jumping cursor moves in
big steps from one active item to another. This ensures that the cursor is always
on a valid input. However, a jumping cursor requires you to space all accessible
items in regular order on a rectangular grid. If the active elements of the display
do not line up in neat rectangular arrays, the user can never be sure which way
to jump to get from one active element to another.

Dedicated devices are tough to design because of tight cost requirements for additional
hardware. Such expenses are justified because easy accessibility to features is just
important as the features themselves. Touch-sensitive screens are best, but conventional
black-and-white LCD screens are adequate if surrounded by mechanical buttons that
can be relabeled.

6490 AID Chapter 14  10/18/02  4:47 PM  Page 189



6490 AID Chapter 14  10/18/02  4:47 PM  Page 190



15
W H Y  L E A R N  P R O G R A M M I N G ?

In Chapter 12, I specified programming ability as one
of the qualifications for an interactivity designer. I real-

ize that this specification generates resistance and resent-
ment among many readers. In this chapter, I intend to

provide a more complete rationale for this specification.

It is a bitter irony that the people best suited to design interactive products
are the least inclined to learn the programming necessary to do so. I have
tried—Lord knows I’ve tried—to prod, shame, encourage, and teach people to
learn programming, but I’m up against deep-seated fears and prejudices that no
amount of sweet reason or fire and brimstone can overcome. Part of the prob-
lem arises from Two Cultures prejudice (see Chapter 27); some comes from fear
that is mongered by programmers; throw in a little natural human laziness, and
you have an unbeatable combination. In this chapter, I intend to do battle with
that windmill.

6490 AID Chapter 15  10/18/02  4:48 PM  Page 191



192 Chapter 15

Piece o’ Cake

Programming itself is not as difficult as people have been led to believe.
Programmers have an economic interest in promulgating the myth of program-
ming as rocket science, and they push that myth for all it’s worth. You need only
consider the lessons of Chapter 10, “Bloopers,” to realize just how easy it is for
programmers to make something simple seem impossibly complex. True, pro-
gramming demands some effort to learn, but it is not of the same order of skill
as, say, brain surgery or jet piloting. It’s closer to accounting, writing, or cook-
ing. Granted, each of these skills has its brilliant artiste practitioners who work
at rarefied levels of excellence. But the majority of practitioners in these fields
are normal people, not flaming geniuses, and you wouldn’t feel presumptuous
to try your hand at any of them. Programming is no different. You should not
permit yourself to be intimidated by all that self-serving programmer hokum.

Don’t Take No Shit

Our culture has learned the importance of accountability in guaranteeing good
behavior, and through much of the past century we have erected forests of
accountability rules for all walks of life. Everything we do has a paper trail:
receipts, time cards, signatures, notifications—gad, what a snowstorm of paper!
Yet we do it because we know that accountability is the best defense against
human perfidy. Yet programmers operate with almost zero accountability. In the
14 programming projects I have completed over the past 19 years, I have never
had a single line of my program code vetted by another programmer. 

There’s a good reason for this: anybody talented enough to evaluate my
code has more profitable things to do than play quality-control inspector. The
field has expanded too quickly; the demand for programmers has always
exceeded the supply, so there are no surplus programmers to provide quality-
control services. And you can be certain that programmers, being human, take
full advantage of the lack of accountability. Knowing that there’s nobody to look
over their shoulders, they indulge in behaviors ranging from petty insubordina-
tion to bald-faced lying.

There’s no escaping the requirement of programming for interactivity proj-
ects. Sure, you can hire programmers to do that work, but the less you know
about programming, the more easily you can be victimized. A knowledge of pro-
gramming will not render you immune to programmers’ shenanigans—I myself
have been deceived by programmers working for me. But the more you know,
the less money and time you’ll lose on this problem, and the fewer design com-
promises you’ll be forced to make for the sake of the programmers. You’ll
always have to take shit from your programmers, but a knowledge of program-
ming lowers your merdivorousity.

6490 AID Chapter 15  10/18/02  4:48 PM  Page 192



Why Learn Programming? 193

You Can’t Drive from the Back Seat

Programming is where the rubber hits the road in interactivity design. I don’t
like that fact; it violates my design aesthetic, which calls for greatest weight to be
assigned to the highest levels of design. Design should not have to dance to the
tune called by programming, but that’s the way things are. If you can’t program,
then you can’t call the tune. If you can program, then the tough trade-offs
between design goals and technical constraints will be made inside your own
head, rather than over a meeting table with an obstinate programmer.

Nor can you lead a team from a position of ignorance. My wife is a manu-
facturing executive, but she makes a point of getting out on the assembly line
and twisting a screwdriver shoulder-to-shoulder with the workers. Her ability to
command willing obedience is derived from their knowledge that she under-
stands their tasks. One of the basic principles of strong leadership is: never ask
a subordinate to do something that you could not do yourself. Business is full of
brash young executives who don’t understand this principle, who rail impotently
at the recalcitrance of their subordinates, earning only their insolent derision. If
you refuse to learn to program, this is the position you’ll find yourself in.

Understanding

Programming is more than the means of actualizing interactivity design; it is
intimately associated with the concepts of interactivity. You can’t dismiss it as a
minor factor best delegated to junior employees. The ideas of programming
closely parallel the ideas of interactivity. Divorcing interactivity design from pro-
gramming is an unnatural act.

Moreover, you stand to gain so much by learning to program. No other area
of human intellectual endeavor is so purely and sparely logical. (Mathematics is
pure but not spare.) It is certainly an alien way of thinking, but your mind is
capable of playing that role. As they say, travel broadens, and the journey into
the weird, cold world of programming will broaden your mind—but you have to
learn the language!

Interactivity Designer as Go-Between

Here’s a gross but illuminating generalization: the human brain is a pattern-rec-
ognizing system, while the computer is a sequential-processing system. The fact
that the computer’s thinking is so orthogonal to human thinking constitutes a
challenge to the designer, but it is also the source of the computer’s utility. After
all, if computers were just scaled-down versions of our own brains, what good
would they be? Who would ever turn to an ignorant, dummied-down brain for
help? When was the last time you asked a two-year-old for career advice?

The essence of every software designer’s task is to create a harmonious and
productive relationship between these two orthogonal styles of thinking. To do

6490 AID Chapter 15  10/18/02  4:48 PM  Page 193



194 Chapter 15

this well, the designer must understand both styles of thinking deeply enough to
bring them together in a productive fashion. Herein lies the fundamental rea-
son why computers suck: programmers don’t understand human thinking, and
designers don’t understand computer thinking.

The problem is similar to that encountered by European explorers when
they discovered new societies. How did the two parties communicate? The
Europeans often had along with them a translator who spoke the language com-
mon a few hundred miles away, but who could barely make out the language of
these new people. The natives might have a local on hand who knew some other
languages, and between them the two intermediaries could just barely under-
stand each other. Imagine yourself, then, as Meriwether Lewis talking to his
interpreter, who talks to a Mandan interpreter, who talks to the Mandan chief.
Imagine the frustrations and misunderstandings inherent in such a situation.
Don’t those frustrations and misunderstandings remind you of your relationship
with your computer? It’s the same story: you’re talking to the computer through
the intermediaries of a software designer and a programmer, neither of whom
can bridge the gap between you and the computer. What a mess!

The only way to tackle this problem is to find a genuine translator who
understands both languages, a single person to act as go-between rather than
the two middlemen we now use: designer and programmer. That single transla-
tor has to be you, the interactivity designer. Ergo, you cannot call yourself an
interactivity designer until you truly understand how the computer thinks—
which means that you must be able to write software. You need not execute the
programming task on every project, but until you understand the computer well
enough to take over the programming task if necessary, you simply aren’t
equipped to design interactive applications. 

Most people will take umbrage with this conclusion, and many will seek to
refute it; some, possessed of blunter emotional acuity, will try to dismiss this
entire book, and those few with the bluntest emotional acuity will want to dis-
credit its author. It is a painful truth to acknowledge, I admit. It implies that
decades will pass before we develop a community of truly expert interactivity
designers. Worse, it implies that most people today are excluded from that com-
munity, relegated to second-class status. Yet I would caution those whose feel-
ings have been hurt with the observation that any truly worthy endeavor cannot
be, and should not be, assimilable in a quick gulp. Every reader of this book can
surely boast of vast expertise in at least one field of endeavor, expertise built on
a long heritage of previous effort and acquired at the cost of years of training
and practice. Were interactivity design to violate this principle and admit to the
ranks of its experts persons with a smattering of experience, then what point
would there be in writing or reading a book such as this? What challenge could
so lightweight a field offer to a truly talented or creative person?

Learn to program.

6490 AID Chapter 15  10/18/02  4:48 PM  Page 194



16
S O F T  M A T H

Simulation requires the use of soft math, which is a
simplified and approximated variation on academic

math. A variety of rules of thumb are offered.

Every interactivity design uses a mental model or simulation.
Simulation is a dangerous term; it connotes a mathematical exactness that is
appropriate only in physical systems. The interactivity designer roams a wider
world, one in which mathematical exactness is often out of the question. Yet
the language of the computer is mathematical in style and content. This
disjunction cleaves the interactivity design community into two groups: those
who insist on confining their efforts to mathematically definable problems, and
those who refuse to contemplate the use of mathematics in their work. The first
group imprisons itself; the second group enfeebles itself.

Soft Numbers

There is a path out of this trap, which I shall call “soft math.” This is the unre-
pentantly sloppy application of simple mathematics to solve problems that could
never be solved rigorously with honest, god-fearing mathematics. 

Consider: how many days are there in a year? You say 365, right? Not quite;
365 is only an approximation. The true value is actually 365? days; that’s why we
have leap years. But, strictly speaking, 365? days is also an approximation; we

6490 AID Chapter 16  10/18/02  4:55 PM  Page 195



196 Chapter 16

drop the leap year on centuries not divisible by 400. That means that the true
value of the year is actually 365.2475 days. But even this answer is wrong, because
the true value of the year, as measured by astronomers, is 365.24220 days. Er,
actually, even that number is off by a little, because the earth’s rotation rate wob-
bles a little; every December 31 at midnight, the people in charge of maintaining
our time standards make tiny adjustments in the official time—normally a few
thousandths of a second. So here are some values for the length of a year:

365 days

3651⁄4 days

365.2475 days

365.24220 days

365.24220 days plus an annual fudge

Which of these numbers is “correct”? We could bury ourselves in endless
philosophical debate over this problem; indeed, it could be argued that there
exists no correct value for the length of a year, because it’s always changing by
minuscule amounts. But there is a workable solution: let’s not try to be dog-
matic and simply use the best number for the task at hand. In other words, a
number isn’t just something that you polish bright and shiny and mount on your
fireplace lintel; it’s something that you use in some sort of calculation. If I want
to buy a year’s supply of pills and I take one pill every day, then I want 365 pills,
not 365.24220 pills. If it’s vitamin pills I’m buying, and they’re so cheap that it
doesn’t matter, I’ll be happy to buy a bottle of 500 pills. On the other hand, if
I’m 48 years old and want to know how many days I’ve lived, I’ll use the 365?
days value to get 17,532 days.

The point of all these silly calculations is that a number is not just a dead
hunk of data; it’s something that you use, and the use to which you put it deter-
mines exactly how “much” number you need. Refer to Chapter 17 and its deeper
discussion of this operational definition of reality.

This concept is so important that I’ll kill a few extra trees with another
example, this one concerned with distance. I can tell you that the distance from
my home to town is 5 miles, but that estimate is accurate to only about half a
mile. The distance from my barn to my house is 450 feet, give or take 5 feet. My
barn is 32 feet long, with an error of maybe a couple of inches. When I cut a 2
by 4, I normally aim to get the cut good to within a 1/4 inch or so. When I’m
making a knife, I try to get the parts shaped right to within about 1/100 of an
inch. Here I have five numbers, each of which is measured to a different degree
of precision. That’s because I’m putting each of the numbers to a different use.
I use the distance to town to estimate travel time and gasoline consumption; half
a mile of error won’t make much difference. I use the distance to my barn to
calculate the length of a fence; 5 feet of error is acceptable in purchasing fence
materials. I’ll be nailing that 2 by 4 against a corner fencepost; it has to line up
properly, but it’ll bend a quarter of an inch if need be. The knife parts have to
fit together neatly without obvious seams; most people can see and feel edges
bigger than 1/50 of an inch, so if I keep everything to 1/100 of an inch, my
knife will look and feel nice. 

6490 AID Chapter 16  10/18/02  4:55 PM  Page 196



Soft Math 197

Soft Formulas

Now I want to apply this concept in another way, a surprising way: this concept
applies to formulas just as well as it applies to numbers. After all, what is a for-
mula but a way to obtain a number? Suppose my hardware store sells fencing by
the meter; I have to convert that 450 feet (plus or minus 5 feet) into meters. The
formula for converting feet into meters is

meters = feet * 0.304800

so I need 137.16 meters of fencing. But what’s the point of worrying about
that last 0.16 meter when the original measurement is good to only 5 feet (a
meter and a half)? What’s the point of sweating the formula when the numbers
are sloppy to start with? It’d be better for me to use 140 meters and stash away
the few feet of extra fencing for a chicken coop or something.

Let’s extend the concept a little further. I’m building a bridge over the
creek; I need to buy some struts to place diagonally in support of my kingpost.
How long should they be? The correct formula is

length of diagonal = length of kingpost / sine (support angle)

Now the kingpost is 8 feet high, and the support angle is 45 degrees. But
jeez, the sine of 45 degrees is 1/2√2, and that square root is 1.414 something.
What the hell; just assume 1.5 and buy a 12-foot timber. I can cut it down to size
on site.

Next I’ll take it a smidge further. I’m planning a garden for my wife; to keep
the deer out, I’ll need a 10-foot high fence completely enclosing it. I plan it as a
square 100 feet on a side, so I’ll be needing 400 feet of fencing. But when I get
to the hardware store, I find that they’ll sell me a 500-foot standard roll of fenc-
ing for only a few dollars more than the custom-cut 400 feet. I want to decide if
the extra money for the 500-foot roll is worth it, so I ask myself, how much
more area would that add to the garden? The extra 100 feet would make it 25
feet larger, or 125 feet on a side. For any square, this formula is true:

area = length2

But jeez, I can’t multiply 125 by 125 in my head. Besides, I don’t want the
total area; I want the increase in area provided by the extra fencing. If you care
to dredge up tedious memories from your freshman year in high school, you’ll
recall the quadratic equation:

(a + b)2 = a2 + 2ab + b2

So I can set it up as

(100 + 25)2 = 1002 + 2 * 100 * 25 + 252

6490 AID Chapter 16  10/18/02  4:55 PM  Page 197



198 Chapter 16

I still can’t figure out 252 in my head, but I do know that the 1002 is the pre-
viously planned area of my garden, and I can see at a glance that 2 * 100 * 25 is
a lot bigger than 252. So let’s just fudge the equation by ignoring the 252 part.
Hence, the difference in area is just 2 * 100 * 25, which is 50 *100, which is
5,000. In other words, the extra hundred feet of fencing will give me an extra
5,000 square feet of garden. 

Note that I shamelessly changed the formula: I threw away the b2 part. But
for my purposes, getting to 5,000 square feet was close enough, so I skipped the
extra work—and the correct answer, 5,625 additional square feet, isn’t that far
from my quick guess.

This basic concept of approximation can be applied to any mathematical cal-
culation of any size or degree of complexity. You have to keep in mind just how
much accuracy you need to get the job done, but you don’t have to waste moun-
tains of time on getting it perfect. 

Suppose now that I’m working on an interactive storytelling program, and I
need to figure out how angry one of my characters would be if he were insulted
by another character. That depends on how ugly the insult is, and how much of
a temper my character has. So here’s my formula:

Anger = Temper * Ugliness

This is not a mathematically or psychologically correct formula expressing
the intricacies of human emotional reaction and brain organization. It leaves
out lots of other factors that, in truth, would affect the angry character. But it
works, and for my purposes it’s good enough. So I use it without fear that some
Math Zeus will strike me with a thunderbolt.

This is what I mean by soft math. This is not a test, and you will not be
marked wrong if your answer is off by 0.04. This is the grubby world of interac-
tivity design, and you have a job to do. Just get close enough; you can always go
back and refine your formulas later if they turn out to be insufficiently accurate.

Blasphemy!

Some people from the arts and humanities are discomfited by this concept. It
seems somehow blasphemous to reduce the richness and subtlety of human exis-
tence to mere numbers. How can we reduce the complexity of an insult to a sin-
gle number? When one of Shakespeare’s characters calls another “Thou slander
of thy heavy mother's womb,” how can a simple dumb number like 29 truly cap-
ture the richness of the jab?

The answer lies in the fact that we are not attempting to capture the rich-
ness of the insult, but only one small aspect of that insult: its ugliness. True,
ugliness is not objectively measurable as would be something like word count or
number of syllables. But what’s wrong with applying a little subjectivity here? Is
subjectivity not intrinsic to the arts and humanities? The issue here is not what
we deal with, but how we express ourselves. What’s the difference between rating
an insult as toothless, weak, minor, moderate, sharp, or vicious, and rating it as
20, 30, 40, 50, 60, or 70? Quantitivity does not exclude subjectivity.

6490 AID Chapter 16  10/18/02  4:55 PM  Page 198



Soft Math 199

If you want blasphemy, try this out for size:

Beauty = Lies + Murder + Suffering

You can certainly blaspheme using mathematical methods, but the blas-
phemy lies in the content of the message, not its form.

Applicability

Some people disdain this easy-going approach to mathematics; they argue that
it’s fine for mere games, but their designs, be they productivity applications,
educational software, or websites, demand precision. This is true only to the
extent that you design pedestrian programs. If you’re designing a word process-
ing program and you want to show the user a page count, it’s pretty hard to
mess up that calculation, and you certainly don’t have to worry about getting
3.14159265358979323 pages. But what if you’re going beyond the word process-
ing designs of 1980? Suppose, for example, that you’re designing a word pro-
cessing program that will give your user advice on the writing style of a
document. You would, of course, use one or more of the many formulas for
clarity of writing, and that would help; but why not include other assessments?
For example, you might want to provide an assessment of the amount of bureau-
cratic language in a document. You should be able to devise an approximate
algorithm for determining the bureau-speak content of a document—but it sure
won’t be precise. It’s easy to look for words like “actualize” or “implement,” to
count all the misapplied suffixes (- ize, -tion, -ate, - ify, and so on), and to count
acronyms, but are there other factors in writing that are characteristic of the
bureaucratic style? This is where your judgment and experience come into play—
use them!

Or how about a “speaking style” detector? This is one of my weaknesses in
writing: I write like I talk. It’s not good; the written word breathes differently
than the spoken word. I’m certain that some harried editor out there could come
up with some simple rules for assessing the “spokenness” of a document. Such
rules wouldn’t be mathematically rigorous, but they would nevertheless be useful.

Here’s an example for educational software designers: you want to design a
program that interacts with your students. You don’t want to merely spray
information all over their faces; you want to respond to each one individually.
There are already some primitive algorithms for this; they count how many
times a student gets an answer wrong, and once the error count climbs too
high, the program suggests (or transfers to) a simpler level of material. But this
can easily be bettered. 

Consider those tedious question-and-answer programs. The computer poses
a question or problem, and the student enters or selects an answer, which the
computer determines to be correct or incorrect. Surely such programs could be
upgraded to, say, the 1950s by adding algorithms that detect particular common
errors and divert the student to special material devoted to those errors. Of
course, if you don’t already know those common errors, you’re not qualified to
teach the subject. When I taught physics, there were plenty of mistakes so com-
mon that I resorted to acronyms in grading them. One such mistake was getting

6490 AID Chapter 16  10/18/02  4:55 PM  Page 199



200 Chapter 16

the units of measurement confused. Students would calculate energy in kg-m/s
or force in kg/s. To think of all the times I had to walk a student through those
remedial lessons! This kind of tedium is what a computer is good for.

You website designers need soft math even more than the educators. Why
are web designers so stuck on designing dead sites? The user’s interests are
assessed solely by the page visited. If you’re visiting our fruit page, you’ll probably
want to see the apple, banana, orange, and peach pages, so we put links to them
on the fruit page. But why should a site’s response be so static? There’s more
information about the user’s interests in the pattern of pages visited. Even the
simplest pattern data can reveal much. A user who returns to the home page fre-
quently during a single visit is clearly engaged in exploration and therefore is
something of a beginner to the site; once the site recognizes this, it can use alter-
nate, beginner-level pages that highlight the best pages for beginners to visit and
downplay the more advanced pages. But what formula should you use to identify
a beginner? How many returns to the home page finger the user as a beginner?

You could define a half-dozen attributes that might be estimated for each
page and then assign a value to each one. In other words, you might estimate,
for each page, its pinkness, quantity of animation, use of ads, quantity of static
imagery, amount of textual information, and jazziness of design. You could then
keep track of the pages a user visits, accumulating the net value of each of the
attributes. After you’ve accumulated enough information, you have a profile of
your user; why not use that profile to steer her? Websites are growing so large
that they have their own internal search engines and other navigational aids;
how about a little intelligent assistance as well?

All of this requires you to use more math. Fortunately, you’ve already
learned all the math you need. You can do wonderful things with high school
freshman algebra, and if you use your sophomore geometry, you can design
algorithms at the cutting edge of interactivity design—that’s how primitive the
state of the art is. The four basic arithmetic operations (addition, subtraction,
multiplication, and division) can accomplish almost everything you would want.
It’s mostly a matter of learning how to use these tools effectively. For example, I
recently learned how to use a crowbar. It’s such a simple tool, I had always
underestimated its utility. But once I learned the difference between the curved
end and the straight end and how to use them properly, I suddenly realized just
how much power I wielded with that simple tool. I started looking around for
things to split, separate, or dismantle. 

An Example

Here’s a problem from interactive storytelling:
The human player is about to do something to Computer Character

Fredegund. Perhaps it’s something nasty, perhaps it’s something nice—we don’t
know in advance because the human player has free will and must be permitted
to make his own choice. Meanwhile, Computer Character Mary is observing the
human player’s actions. What will Mary’s reaction be? Let us assume, for pur-
poses of simplicity, that the only variables here are:

6490 AID Chapter 16  10/18/02  4:55 PM  Page 200



Soft Math 201

1. Whether the human player’s action was nice. (Nice)

2. Whether Mary likes or dislikes Fredegund. (Likes)

3. Whether Mary is pleased by the human player’s action. (Pleased)

This third variable is the one we want to calculate.
Here’s an obvious and common approach to solving the problem, expressed

in simple pseudocode:

IF Nice AND Likes THEN Pleased

IF NOT Nice AND Likes THEN Displeased

IF Nice AND NOT Likes THEN Displeased

IF NOT Nice AND NOT Likes THEN Pleased

This approach is weak because it is instantial in style. It is a case-by-case,
nit-picky approach. There is no generality to it, no principle at work. It is, in my
own terminology, data intensive. It is clumsy and inflexible. It is also simplistic.

Here’s a slightly better approach:

Pleased = NOT (Nice EOR Likes)

This Boolean equation says exactly the same thing that the earlier set of
four equations says, but it is superior, for two reasons. First, it is more efficient;
it consumes less program space and executes faster. Second, it is a clearer state-
ment of the actual principle at work. It gets right to the point. In a single sen-
tence, it defines the principle at work, whereas the first approach requires four
sentences to make its point. Thus, this second approach represents a deeper
understanding of the principle at work than the first approach. A thousand
years ago, swordsmiths knew the steps required to make carbon steel, but it
wasn’t until this century that we understood why those steps worked. This
understanding permitted many improvements on the process. In the same fash-
ion, the second approach points the way to the third and best approach:

Reaction = Niceness * Affection

In this approach, I have replaced the Boolean variables Pleased, Nice, and
Likes with the arithmetic variables Reaction, Niceness, and Affection. For exam-
ple, the variable Affection can range from, say, –100 to +100. Niceness spans a
similar range. This equation thus says everything that the earlier approaches say,
and much more. To appreciate the power of this formula, you should try out a
variety of numbers between –100 and +100 in the formula to see what answer
you get for Reaction. For example, if Mary’s Affection for Fredegund is zero,
then it doesn’t matter how nice or nasty the human player’s action is; whatever
the value of Niceness, it will be multiplied by zero, which will always yield a
result of zero for the reaction. In other words, if Mary has neither affection or
disaffection for Fredegund, then Mary doesn’t care what I do. The equation also
allows a graduated appraisal of Mary’s reaction. She isn’t just a robot who is
either pleased or displeased; she can have shades of reaction. In other words,

6490 AID Chapter 16  10/18/02  4:55 PM  Page 201



202 Chapter 16

the generality of the solution has increased. The first solution addresses exactly
four cases. The third solution addresses myriad different cases.

Notice that, as we moved from the first approach to the third approach,
the solutions became more difficult to understand. That third equation takes
more mental effort to grasp than the first set of IF-THEN statements. This is
the reason why so few designers use such methods—they are more difficult to
understand.

Rules of Soft Math

1. Quantify it. Whatever your design problem is, ask yourself what kind of
number or measurement you could use to tackle it. Remember to think
operationally—you’re not looking for the “correct” number; you’re looking for
the number that you can use to the benefit of the user. Don’t hesitate to
quantify seemingly nonnumeric factors. You can think of your user’s
impulsiveness by counting how many times she erases something entered or
backsteps. Sure, that’s not really impulsiveness, but it’s a usable approximation,
something you can apply to make your design more responsive. Don’t waste
time on philosophical arguments about what a label really means. You’re using
the word Impulsiveness in your design, not the real world, and like Humpty-
Dumpty, you can use it to mean whatever you want it to mean, no more and no
less. You could call it Zargonosis if you wanted, but Impulsiveness might help you
keep your intent in mind. 

Lord Berkeley said “To measure is to know,” It’s just a game, of course—
talking about a user’s Impulsiveness, Error-Proneness, Spelling-Correctness, and
so forth may seem rather silly—but once you’ve dreamed up the variables, you
can start to apply them in useful ways. You’ll probably get some of them wrong,
but if you refuse to dream them up in the first place, you’ll never get off the
ground. Crawford’s Corollary to Berkeley’s dictum is “. . . and to calculate is to
understand.”

2. Either means addition. Once you have some variables, you need to figure
out how to put them together to calculate useful numbers. What’s the right
formula to use? Just talk about it in plain English. Suppose you want to decide
how liberally you should issue cautionary warnings to your user. What kind of
user would benefit from such warnings? Either an error-prone user or an
impulsive user. Ergo:

Warning Frequency = Impulsiveness + Error-Proneness

Subtraction is really the same thing as addition, only in the opposite direction. 

3. Both means multiplication. If I say that a character’s reaction to an event
depends on both the Niceness of the action and the character’s Affection for the
object of the action, then I express this as a multiplication:

Reaction = Niceness * Affection

6490 AID Chapter 16  10/18/02  4:55 PM  Page 202



Soft Math 203

4. The difference between addition and subtraction, or between multiplication
and division, is often a matter of how you define your factors. In the previous
example, I could have used a variable Hatred instead of Affection, and then my
equation would have read:

Reaction = Niceness / Hatred

Subtraction is similar. If I want to calculate how much money I have left
after tax day, I’d be tempted to do it as a subtraction:

Money Today = Money Yesterday – Taxes Paid

But there’s a more optimistic way of thinking about it:

Money Today = Money Yesterday + Tax Refund

Of course, both formulas yield the same result, because if I paid taxes, then
Tax Refund is negative, and if I get a refund, then Taxes Paid is negative.

5. If you’re confused with subtractions and divisions, redefine your factors. If
you don’t like the subtraction equation, then use Tax Refund and flip to
addition. Use whichever form is easiest.

6. Sometimes you need fudge factors. These are numbers you grab out of thin
air to make a formula work better. For example, consider the earlier formula for
giving warnings to an errant user:

Warning Frequency = Impulsiveness + Error-Proneness

Suppose that you measured Impulsiveness by the number of times the user
backtracked; that would give you a regular number like 4 or 9. But suppose that
you measured Error-Proneness by the fraction percentage of times that the user
made an error; that would be a number between zero and one. If, in one case,
Impulsiveness were 4 and Error-Proneness were 0.3, then your Warning
Frequency would be 4.3. That’s not fair to Error-Proneness! So let’s just scale it
up to level the playing field:

Warning Frequency = Impulsiveness + (10 * Error-Proneness)

That 10 that I inserted is a fudge factor that I just made up. It might be too
big; I’ll just have to use the program a while to get a sense for how well-tuned
my fudge factors are, and perhaps I’ll come back and adjust it during the final
tuning stages of the design process.

7. Watch out for division by zero. If you use division, you always have to be on
the lookout for a formula that divides a number by another number that just
happens to be zero. For example, suppose that I cooked up this formula:

Gorgonzolaness = Typing Speed / Frequency of Error

6490 AID Chapter 16  10/18/02  4:55 PM  Page 203



204 Chapter 16

Suppose now that my program encounters some inhuman typist who simply
doesn’t make mistakse. When this formula is computed, the program will look
up the value of Frequency of Error and find that it is zero. When it puts that
zero into the formula and divides Typing Speed by zero—kaboom! the program
crashes. There is no computer in the world that can gracefully deal with a divi-
sion by zero, because division by zero is mathematical gibberish.

This may surprise you; after all, computers are omnipotent, right? Well, divi-
sion by zero is rather like what Captain Kirk used to do to befuddle rampant
computers. 

Suppose that you are carefully following along as Mister Master Chef on tel-
evision shows you how to bake garlic oysters, and halfway through he says, “Now
this is a very important step . . .”—and the TV dies! What could you do? The
dog gets oysters tonight. The same thing happens when a computer program
encounters division by zero. It crashes. Modern operating systems are smart
enough to throw up firewalls and confine the damage to your program, but
there’s nothing that can save your program once it hits that division by zero.

Fortunately, division by zero is easy to fix. You can tell the programmer to
check for zero and abort the calculation if it appears. Or you can just add some-
thing to the denominator, like so:

Gorgonzolaness = Typing Speed / (Frequency of Error + 1)

Now you’re safe—most of the time. If Frequency of Error were ever –1, then
you’d end up dividing by zero again. So this technique works only with variables
that can’t go negative.

8. It will happen to you! Don’t ever, ever tell yourself that any factor can’t ever
take on some dangerous value unless you have absolute mathematical proof that
it won’t happen. Don’t tell yourself “None of my users will ever be that fast”—
someday, somebody will be.

9. Keep it short and simple. A formula with two factors is easy to figure out, a
formula with three factors takes some effort, and a formula with four factors is
well-nigh impossible for most people to understand, unless it’s simply arranged.
For example, what does this formula do?

Gorgonzolaness = Typing Speed / (Errors - (Tax Refund / (Money Today + 1)))

I can’t make sense of it either.

Simulation is the art of playing games with numbers and formulas to emphasize what
is important and ignore what is not. In the real world, much mathematical sloppiness
is necessary. You can do great things with math as simple as high school algebra. To
measure is to know, and to calculate is to understand.

6490 AID Chapter 16  10/18/02  4:55 PM  Page 204



PART THREE
THEORY

6490 AID Chapter 17  10/18/02  4:56 PM  Page 205



6490 AID Chapter 17  10/18/02  4:56 PM  Page 206



17
P R O C E S S  I N T E N S I T Y

Underlying interactivity design is the notion of
process-intensive thinking.

One of the deepest and most fundamental polarities in the uni-
verse is that of entities versus operations: facts versus principles, knowl-

edge versus ideas. This polarity is so profound that it shows up over and over in
many fields, each time in a different guise, but the basics are always the same.

In philosophy, one pole might be called the operational definition of reality:
reality is as reality does. We think about the universe as an intricate webwork of
processes, which as a whole generate reality. The other pole is reality is a set of
objects: the universe considered in terms of things. The objects, of course, inter-
act with each other, but the essential truth is the set of objects. Are you a glob
of organic chemicals and water? Or are you perception plus digestion plus loco-
motion plus thinking plus . . . ? 

In linguistics, this polarity presents itself as the distinction between noun
and verb. These are the two absolutely necessary fundamental atoms of lan-
guage. The other atoms (adjectives, prepositions, adverbs, and so on) are funda-
mental (not composed of the first two) but not absolutely necessary. You can
build a language with nouns and verbs and leave out all the other grammatical
types. But you can’t construct a language without nouns or verbs.

In computer science, the polarity concerns the two most fundamental units
of computation: bits and machine cycles or, in other terms, data and processing.
Again, these are fundamental requisites of computing. You can still compute

6490 AID Chapter 17  10/18/02  4:56 PM  Page 207



208 Chapter 17

without printers, color monitors, mice, or keyboards, but you absolutely must
have some memory for the data and a CPU for the processing.

Physicists talk about waves and particles, and these correspond to the pre-
ceding examples. Clearly, particles correspond to objects. I think it acceptable to
think of waves as processes because a wave is a dynamic process in which some-
thing (often energy) sloshes from one form to another repetitively. Unless
physics has greatly changed since I was in graduate school, you can be confident
that any solvable physics problem can be solved with either wave mechanics or
particle mechanics.

How about economics? Here we encounter goods versus services. Goods are
objects, while services are processes. These are the two fundamental forms of
economic output. You can’t have an economy without both of these.

We can even extend the principle into the arts: in storytelling, we can distin-
guish between the character-based story (object) and the plot-driven story
(process). And despite Hollywood’s intense efforts, it remains impossible to cre-
ate a decent story without some plot and some character, although I am told that
the movie Godzilla made an impressive attempt in this direction.

Now I’m going to present some grand generalizations about this deep polar-
ity. In each case, I’ll try to exemplify the point with reference to the disciplines
I’ve mentioned.

Duality

Duality is the notion that one can successfully (if clumsily) address any problem
by hewing to one of the forms (object or process) or by using any mix of the
two. Indeed, we recognize that any given situation will be most easily handled
with some particular mix of the two forms. Thus, philosophers could, if they
wanted to, achieve an all- inclusive definition of reality using some fluid mix of
the operational approach and the object approach. Linguists will tell you that a
word can readily switch from verb to noun and back again. I could call myself a
person (object), but I could also refer to myself in verb terms as a human being:
a human-type act of existence. Indeed, in English we have a formal mechanism
for converting a verb to a noun: just add the suffix -ing to the verb root and
presto! you have a gerund. We have no formal way to nounify a verb, but we
extemporize; sometimes we simply pressgang the noun into a verb.

Duality is clearest and simplest in computer science. It is widely recognized
that any computable problem can be solved with a range of algorithms combin-
ing data and processing in any mixture. We can use a table-driven approach that
consumes lots of bits and few cycles, or we can try a formula-driven approach
that uses lots of cycles and few bits—as well as almost any combination of the
two. It’s a matter of how many bits and how many cycles we have to play with,
and how clever we are.

One of the big discoveries of twentieth-century physics is the wave-particle
duality. You can talk about any physical phenomenon as either a wave or a parti-
cle, even though the mathematics used to describe these two are fundamentally
different. In some cases, the particle equations are the most useful, and in other
cases, the wave equations yield the greatest utility—but there remain plenty of
phenomena that require us to use both particle physics and wave physics.

6490 AID Chapter 17  10/18/02  4:56 PM  Page 208



Process Intensity 209

Economics offers no challenges to the principle; we can intermix goods and
services willy-nilly. As somebody pointed out recently, it’s impossible to unam-
biguously determine whether McDonald’s sells goods (burgers) or provides serv-
ices (food preparation). Is McDonald’s a service providing customers with fast,
hot meals, or is it a distribution system for all-beef patties, lettuce, onions, pick-
les, and sesame-seed buns? In writing this book, have I provided a service (intel-
lectual edification) or a good (a hunk of paper)?

On to storytelling: writers, being naturally opinionated, tend to divide into
tribal units, one supporting the character-based approach and the other touting
the plot-driven approach. Yet each side grudgingly acknowledges the necessity of
the other. They are arguing primacy, not necessity. And (just as some things are
pretty clearly goods, particles, bits, or nouns, while others are more obviously
services, waves, cycles, or verbs), so too in drama do we have some stories that
are pretty clearly character based, and others that are pretty clearly plot-driven.

Nounism

Despite the apparent symmetry between the two extremes of the polarity, we
humans seem to have a strong bias towards the object pole. I’m not sure why;
perhaps it arises from our sensory system, which handles objects so much better
than processes. Perhaps it’s the temporal permanence of objects versus the tem-
porally diffuse and narrow existence of processes. Perhaps it’s merely our lan-
guage; most languages seem so much more facile with noun phrases than verb
phrases. Indeed, 60 percent of the first gurgling vocalizations of infants will
eventually develop into nouns; only 20 percent will become verbs. There are a
few exceptions, of course, including one Native American language that seems
to verbify almost everything—but such exceptions are notable because they are
so weird.

Certainly a contributing factor to our prejudice in favor of objects over
processes lies in the inherent abstraction of processes as opposed to the con-
creteness of objects. This abstraction, however, lies at the heart of the power of
process. Thus, the very factor that makes process so difficult to deeply compre-
hend is what gives it its power.

An easier way to recognize the prejudice of nounism is to note the historical
trends in some of the above-mentioned fields. In computer science, for exam-
ple, we have seen an explosion of creative activity in the last decade arising from
the wide availability of PCs and the Internet. But has anybody noticed that the
preponderance of this creativity has expressed itself in—and been measured by—
the huge number of bits that have been made available? Between CDs and the
Web, we now have humonga-bytes of images, sounds, text, numbers, and all
manner of other data. But consider this: we have also built enough computers
(and made them so fast) that every day, civilization expends humonga-cycles of
processing time. And what are all those cycles doing? I’d guess that almost all of
those cycles are wasted in wait loops, as the computer sits for eternities (in its
own time scale) waiting for the rare keypress or mouse click. And even the
cycles that aren’t wasted are used almost entirely for shuffling bits around: mov-
ing an image from a CD to the screen, a sound from memory to a speaker, and

6490 AID Chapter 17  10/18/02  4:56 PM  Page 209



210 Chapter 17

so on. An infinitesimal fraction of the cycles we generate every day are used to
actually process anything. We push numbers around a lot, but we seldom crunch
them. It seems a great shame to use this wondrous processing machine to shuf-
fle bits around; is it not unlike using a human being endowed with character
and feelings and soul to bail water from a canal to a field? It would seem that, in
terms of truly utilizing the power of the computer, we still have a long way to go.

The history of physics shows our noun prejudice even more clearly. Isaac
Newton gave us a pretty good system of mechanics for particles back in the sev-
enteenth century, but we didn’t get decent wave mechanics until the nineteenth
century. We solved the easy part (to us) two centuries before we tackled the
hard part.

To see noun prejudice in economics, observe how long economics devoted
itself solely to goods. The realization that services are just as important came
towards the middle of this century. But the trend is ontogenetic as well:
economies themselves grow from goods orientation to service orientation.

Process Intensity and Data Intensity

To express this polarity in terms most appropriate to interactivity design, I use
the concept of process intensity versus data intensity. Process intensity is the
degree to which a program emphasizes processes instead of data. All programs
use a mix of process and data. Process is reflected in algorithms, equations, and
(to a lesser degree) branches. Data is reflected in data tables, images, sounds,
and text. A process- intensive program spends most of its time crunching num-
bers; a data- intensive program spends most of its time moving bits around.

The difference between process and data is profound. Process is abstract,
whereas data is tangible. Data is direct, whereas process is indirect. The differ-
ence between data and process is the difference between numbers and equa-
tions, between facts and principles, between events and forces, between
knowledge and ideas. It’s easy to memorize a number, a fact, an event, or knowl-
edge, but consider how much more difficult it is to appreciate an equation, a
principle, a force, or an idea.

Processing data is the very essence of what a computer does. There are many
technologies that can store data: magnetic media, punched cards, punched tape,
paper and ink, microfilm, microfiche, and optical discs, to name just a few. But
there is only one technology that can process data: the computer. This is its pri-
mary source of superiority over the other technologies. Using the computer in a
data- intensive mode ignores its true nature and its greatest strength.

The Crunch-per-Bit Ratio

Because process intensity is so close to the essence of “computerness,” it pro-
vides us with a useful criterion for evaluating the value of any software design.
That criterion is the ratio of operations per datum, which I call the crunch-per-bit
ratio. An operation is any process applied to a datum, such as an addition, sub-
traction, or logical operation or a simple Boolean inclusion or exclusion opera-
tion. A datum in this scheme can be a bit, a byte, a character, a number, a pixel,
or a sonel: it is a small piece of information.

6490 AID Chapter 17  10/18/02  4:56 PM  Page 210



Process Intensity 211

To demonstrate its utility, I shall apply this criterion to word processing
software. Suppose that you are going to write a book with your word processor.
Suppose further that you are omniscient in the subject matter of the book,
impeccably organized, and a perfect typist. You simply sit down at the keyboard
and start typing as you compose, making not a single mistake. After many days
of work, you have your book, but what was the point of using a word processor?
You could have done the same thing on a typewriter. In short, as far as you’re
concerned, the word processor has no advantage over the typewriter. Now let’s
estimate the crunch-per-bit ratio: it was zero, because not a single word or char-
acter was actually crunched by the program. The words moved directly from
your keyboard to the printer with no significant intervening processing. Hence,
zero crunch per bit makes a word processor no more useful than a typewriter.

Now suppose that you discover that your omniscience was less omni than
you thought, and there are a few little mistakes that you need to clean up. You
go back to the word processor, make a few minor changes, and print the new
manuscript. Now you can say that the word processor delivered some advantage
compared to the typewriter, but not a stupendous advantage—you could proba-
bly have managed with a little cutting and pasting and perhaps retyping a few
pages. Again, let’s estimate the crunch-per-bit ratio: it has gone up from zero to
a small value because you have manipulated some (but not most) of the data in
the file. Hence, a small crunch-per-bit ratio yields a small benefit.

Now suppose that you are older and wiser, and you realize that your manu-
script is riddled with errors. You need to change the spellings of many words,
you must completely reorganize the book and most of its chapters, and you
really should change its layout, too, while you’re at it. You can thank your lucky
stars that you have a word processor. You’ll be doing intensive reprocessing of
the data as you move things around, execute massive search and replacement
operations, and in general crunch the hell out of your manuscript. Obviously,
the crunch-per-bit ratio is high, and this is the situation in which the word
processor shines its brightest. Your word processor is most useful when you use
it to do lots of crunching. Hence my conclusion that crunch-per-bit ratios indi-
cate the overall utility of a design.

The same analysis works with other applications. Spreadsheets show their
greatest value when you recalculate the same data many times with many differ-
ent variations. If all you do is enter the numbers and print the result, you’re not
getting much value from your spreadsheet. Database managers earn their price
only when you have them sort, search, report on, and otherwise munch the data
in many different ways. Photo-retouching programs are worthwhile only if you
do a lot of touching.

The same is true with games: the higher the crunch-per-bit ratio, the more
“computery” the game is and the more likely the game will be entertaining.
Indeed, games in general boast the highest crunch-per-bit ratios in the comput-
ing world. Consider how little data a player enters into a flight simulator and
how extensive are the computations that this data triggers.

This applies just as well to the web. A data- intensive web page simply down-
loads its text, images, and sounds to your computer; a process- intensive web
page does lots of calculations to personalize the page to meet your precise
needs. Aren’t those snazzy personalized pages that come out of search engines

6490 AID Chapter 17  10/18/02  4:56 PM  Page 211



212 Chapter 17

and buyer recommendation sites more useful than those bland pages that say
exactly the same thing to every user?

The crunch-per-bit criterion also works well in the negative sense as an
exposer of bad software ideas. For example, the early days of the personal com-
puting era were darkened by a stupid idea called a checkbook balancing pro-
gram. This piece of software was universally cited whenever anybody was
boorish enough to question the value of personal computers. A checkbook bal-
ancing program would take all your checkbook data and figure out the true bal-
ance. You simply typed in all your checks, and it figured your balance. It wasn’t
vaporware, either; there were lots of these checkbook balancing programs float-
ing around. The thing was, nobody ever seemed to use them. Why not? Nobody
seemed to be able to say just why, but they just weren’t practical. Let’s apply the
notion of process intensity to checkbook balancing programs. Every number
entered from the keyboard is either added to or subtracted from the checkbook
balance, but the addition or subtraction happens just once for each check or
deposit. That’s one operation per datum—a low crunch-per-bit ratio, demon-
strating the inutility of checkbook balancing programs.

Nowadays, we have personal finance programs such as Quicken; they increase
the crunch-per-bit ratio by using the financial numbers in additional ways: sorting
by expense categories, grouping by dates, organizing reports that permit detailed
examination of some special aspect of the financial data. By increasing the
crunch-per-bit ratio, these programs crossed the threshold of utility and became
worthwhile. If they had not made these changes, we wouldn’t be using them.

We can even apply the process- intensity principle to bad games. Does any-
body remember that smash hit arcade game of 1983, Dragon’s Lair? This was
the first videodisc game, and its glorious cartoon graphics created an instant
sensation. The press rushed to write stories about this latest grand break-
through; consumers threw bushelsful of quarters at the machines; and Atari
frantically initiated half a dozen videodisc game projects. Amid all the hubbub, I
alone stood unimpressed in my ivory tower, nose held high in contemptuous dis-
missal, disappointing reporters with wet-blanket comments that this was merely
a fad. And sure enough, within a few years these videodisc games had disap-
peared from the scene. How was I able to correctly perceive that the videodisc
game was doomed to failure once its fad value was exhausted? Simple: its
crunch-per-bit ratio stank. All that data came roaring in off the disc and went
straight onto the screen with barely a whisper of processing from the computer.
The player’s actions did little more than select animation sequences from the
disc. Not much processing there.

An Objection

Here’s an argument sometimes raised against my claim:

But both process and data are necessary to good computing. An algorithm without
data to crunch is useless; hence, a good design establishes a balance between process
and data.

While this argument is fundamentally sound, it does not suggest anything
about where the proper balance lies. It merely establishes that some amount of

6490 AID Chapter 17  10/18/02  4:56 PM  Page 212



Process Intensity 213

data is necessary. It may well be that the proper balance between process and
data is 90 percent process and 10 percent data; this objection does not suggest
or imply any particular balance. It certainly does not suggest that data deserves
emphasis equal to that accorded to process. And it certainly does not disagree
with my assertion that the crunch-per-bit ratio should be large. Indeed, my crite-
rion agrees that zero data is a Bad Thing; if there is zero data, then the crunch
per bit ratio is mathematically undefined. We need to think harder about where
lies the proper balance between process and data.

Personal Thinking Styles

Unfortunately, our attempt to find the ideal balance between process and data is
hampered by our own prejudices. Most people are saturated with noun preju-
dice, and their thinking is consequently slanted. The embracing of process
intensity in our thinking involves some degree of rejection of data, more as an
act of discipline than necessity. All too often we grab for the simple fact that
answers our immediate question, rather than grappling with the underlying
principle. This is a natural and forgivable act of laziness—but do we expect to
accomplish anything worthwhile through laziness?

Some people might bewail this ugly prejudice that colors our approach to
reality, but I am not one of them. I see this as opportunity, not injustice. If
everybody else wants to limit their thinking in some fashion, then I can leverage
my poor mental abilities by concentrating on what other, smarter people don’t
think about. For many years, I have worked hard to grok the operational
approach, to bring it close to the innards of my thinking. It is, I confess, quite
alien in style; my brain resisted stubbornly. Yet my experience proves that it can
be done.

Remember the first and most important question every interactivity
designer should keep in mind: “What are the verbs? What does the user do?”
That question is about verbs, not nouns. Interactivity lies on the process side of
the spectrum. It’s not inter-object- ivity—it’s inter-act- ivity.

We all know that precise logical thinking requires discipline and effort; it is
an artificiality that we impose upon our nonsequential brain cells. At heart,
when we think logically, we’re faking it. But fake or no, the results are indis-
putable: that kind of thinking is what allowed us to trod the moon. So the best
of us grit our teeth and endure the unnatural act of logical thinking. Process-
intensive thinking is even stranger, even more unnatural; it demands even
greater discipline and greater effort. But if sequential thinking took us to the
moon, where might process- intensive thinking take us?

If you would be an interactivity designer, learn to think operationally.

6490 AID Chapter 17  10/18/02  4:56 PM  Page 213



6490 AID Chapter 17  10/18/02  4:56 PM  Page 214



18
L I N K M E S H E S

Trees generate a geometric explosion in the number
of nodes required. You will recall from Chapter 7 that

the branching tree structure creates a huge problem: the
number of nodes increases dramatically as you add more

branchpoints. Before you can create many viable options, the tree
becomes too large to be buildable. The general solution to this
problem is a linkmesh, a tree with loopback links and state vari-
ables. The set of state variables you choose is critical to good inter-
activity design.

In Chapter 7, I introduced you to the Crawford diagram and the basic archi-
tectures of interactive design. In this chapter, I shall explore these architectures
at a deeper level.

Recall that the simplest architecture is linear, and that this structure is non-
interactive.

6490 AID Chapter 18  10/18/02  4:58 PM  Page 215



216 Chapter 18

To go interactive, we use a tree, which can suffer from the problem of the
geometric explosion of nodes:

I presented some ameliorating strategies in Chapter 7, but in this chapter I
shall present a more fundamental solution: the linkmesh. As with the Crawford
diagram, a similar structure is used in computer science, known as a directed
graph, but again, some subtle differences are just enough to make use of this
term inaccurate in our setting—and we wouldn’t want all the computer science
people getting mad when we use their term in our way, would we?

A linkmesh is a tree with two crucial additions: reverse flow and state vari-
ables. Perhaps you noticed that in both linear and tree structures, the user
always moves downward. Why shouldn’t the user be able to reverse direction
and move upward? Suppose that we made one small change in the tree:

6490 AID Chapter 18  10/18/02  4:58 PM  Page 216



Linkmeshes 217

This one change has profound effects upon users’ experiences, for now they
can move from node M back up to node E and from there to nodes H and D or
some other pair. They could even repeatedly move E-H-M-E-H-M and follow that
loop forever. Such behavior might seem boring, but look how easily it changes
with the addition of another reverse flow arrow:

Now the user can move E-H-M-E as before, but then take another path from
E through H, then D, and back up to B. With a few more reverse flow arrows,
we can offer the user hundreds of paths through the linkmesh. Consider just
how many paths there are through this mathematically idealized linkmesh:

6490 AID Chapter 18  10/18/02  4:58 PM  Page 217



218 Chapter 18

Theoretically, there are an infinite number of distinct paths through this
linkmesh, but if you wish to limit the length of a path to, say, six steps, then
there are 46,656 distinct paths. And that’s with only six nodes! Note also that
this design completely eliminates the notion of directionality that characterizes
the tree. The tree has a top and a bottom, but this design can be approached
from any direction. Clearly, this theoretical ideal would never be attained in
practice; every program must have a beginning, a middle, and an end—hence,
the necessary imposition of some directionality on the otherwise symmetric
design of the linkmesh.

With just a few more nodes, the number of pathways explodes geometri-
cally. For example, a 10-node mathematically ideal linkmesh would permit one
million distinct paths with only six steps. Thus, with linkmeshes, we invert the
problem we had with trees, transforming it into a benefit. A tree requires a geo-
metrically exploding set of nodes to provide a small increase in the number of
paths. A linkmesh creates a geometrically exploding set of paths for a small
increase in the number of nodes. 

This concept, by the way, is not especially new; it is a variation of the con-
cept of looping in programming. As every programmer knows, a program with-
out a loop just isn’t worth writing. In the same way, an interactive application
without a linkmesh just isn’t worth designing. That’s because a linkmesh is actu-
ally just a loop seen through a different dimension. 

State Variables

There may be 46,000 different paths through the hexagonal linkmesh shown in
the preceding section, but they’d be pretty boring; after about the tenth visit to
node C, you’d probably be bored out of your skull. But there’s one other trick

6490 AID Chapter 18  10/18/02  4:58 PM  Page 218



Linkmeshes 219

that makes this architecture worthwhile: state variables. These are numbers that
change during your passage through the various nodes. An easy example comes
from the old videogame Pac-Man. The player moves through a simple maze with
34 nodes. If that were all there was to the game, it would have been better
known as Boring-Man. But there are also pills to eat and ghosts to evade. These
additions constitute state variables; as the player moves through the maze, those
state variables change. Thus, when the player comes to node #27 the first time,
she might find Pinky and Blinky above and to the left of her, so she would
rather move down or to the right. Later, however, the player might find herself
right back at node #27, only this time Pinky and Blinky are both below her, so
she will choose to move up. The maze (linkmesh) has not changed, but the state
variables have, and this change gives new significance to each node.

The concept of state variables applies equally well to more serious applica-
tions than games. For example, imagine a polygon like the hexagon shown ear-
lier, only this polygon has 101 nodes, one for each key on a keyboard, and they
are completely interconnected. This is the linkmesh for a word processor; the
state variable is the user’s previous path through the maze. Thus, if the user has
just begun typing the word circle and has typed the letter c, then the next choice
in the linkmesh would be i, but a little later the user would find himself right
back at the same old letter c. This second time, however, the succeeding choice
would not be i ; it would be l. Now, this may all seem like a convoluted way to
describe the familiar task of word processing, but sometimes a fresh way of con-
ceptualizing something affords new insights into improving it. For example, if
we visualize the linkmesh for that word processor, we will note that it is not a
perfectly symmetrical 101-sided polygon; some of the links are highly probable,
and some are less probable.

There’s nothing obviating the use of state variables in trees. But the full util-
ity of state variables is best realized by linkmeshes. That’s because a tree already
contains some of the user’s state variables implicitly in the user’s location (for
example, “you couldn’t have gotten here unless you previously found the silver
key”). A linkmesh cleanly separates history from location. In an ideal tree, you
can determine the user’s history from his current location in the tree. In an ideal
linkmesh, this is impossible: a user could have arrived at any node by any path.

Designing State Variables

The tree structure is simple to design but tedious to implement: all you must
do is specify all the nodes and their connections. The linkmesh structure is
more complex; you must also design the state variables and how they change
during the user’s traversal through the linkmesh; fortunately, this greatly
reduces the amount of busywork that you would face with a tree design. Thus,
a linkmesh substitutes cleverness for tedium. Here are some techniques for
designing state variables:

6490 AID Chapter 18  10/18/02  4:58 PM  Page 219



220 Chapter 18

Simplest is a Boolean variable representing the user’s arrival at a node. At the
outset of the interaction, the user has not yet visited the node, and the state vari-
able has a value of FALSE. Later, however, the user enters the node, and we set
the state variable to TRUE. This crude trick is the basis for most adventure games.
If you enter the Secret Closet, you’ll see the Golden Key, which can itself be
treated as a node. By entering that node (picking up the Golden Key), you set the
Boolean variable “Does the player possess the Golden Key?” to TRUE. Much later
in the adventure, you encounter the Castle Gate node, which is the only entryway
to the Treasure Room node. At the Castle Gate node, the program consults the
Boolean variable “Does the player possess the Golden Key?” If the value of the
state variable is TRUE, the program permits the player to open the Castle Gate
and enter the Treasure Room.

For a more serious example, consider this: You’ve just opened your word
processor and are looking at a blank page. In a stroke of perversity, you decide to
save the blank document, but lo and behold, your word processor won’t allow it.
That’s because the Boolean variable “Has the user entered any text yet?” is still
FALSE; it won’t be set to TRUE until you enter at least one node (type one key).

An even more pertinent example is provided by the now-universal practice
of Preferences dialog boxes. Whenever you set a preference (for example, “Don’t
warn me before doing . . .” or “Auto-save my document every 10 minutes”), you
are setting the value of a state variable. State variables make it possible to cus-
tomize the program to the user’s tastes.

The next step up is the counting state variable. This variable starts at zero
and counts the number of times you do something. For example, a password-
protection scheme might have a challenge gateway (“Please enter your password
now”). You type your password incorrectly and enter it; the program rejects the
password and tells you to try again. If it’s smart, it might also add one to the
count of the number of attempts you have made. After, say, three or four
attempts, it might reasonably conclude that you don’t know the password and
you’re just guessing, at which point it could gently advise you to go look up your
password, or perhaps terminate the program, or perhaps call 911 to report an
attempted break- in.

From here we graduate to fully arithmetic state variables: numbers that are
calculated by special formulas for various reasons. For example, a personal
finance program will have state variables for how much money you have, how
much you spent on groceries, and so forth. These state variables will be added
to or subtracted from each other depending on whether they’re income or
expense. The nodes you encounter, though, are always the same. There’s a node
for entering a check’s amount, another for declaring whether it’s income or
expense, another for specifying the other party, and so on. Once you’ve learned
the basic nodes of the budget-calculating program, you use those nodes over
and over, entering lots of checks, credit card debits, and so on, and steadily
changing the state variables. 

6490 AID Chapter 18  10/18/02  4:58 PM  Page 220



Linkmeshes 221

Here’s another example: In my interactive storytelling technology, each
node represents one action taken by one character. Of course, one character
might repeat the same action a number of times, or we might see different char-
acters using that node at different times. Suppose that the node is “Character A
punches Character B in the nose.” We might well have a state variable for how
much each character likes every other character. Then, whenever a character
enters this node (that is, punches somebody else in the node), we reduce the
amount of affection that the punchee holds for the puncher. The same node
can be re-used many times, but the state variables change. After the fifth time
he gets punched in the nose by Big Bully, perhaps Nerdy Wimp will pull out his
handgun (he’s American) and blow that bastard’s head off.

Choosing State Variables

The set of state variables you choose is critical to the usefulness, colorfulness, or
flexibility of your linkmesh. If your state variables are too few and too simple,
then your linkmesh will be thin and repetitive. On the other hand, if you make
your state variables too numerous and too complicated, you’ll lose intellectual
control of your linkmesh. As I discuss in Chapter 26, the nature of control in
interactivity design is more indirect, more abstruse than the control we are
familiar with in conventional design. Remember how many paths there can be
through even a small linkmesh. You cannot possibly trace each of those paths
explicitly; you must instead think in more abstract terms about likely behaviors.
All too often, we fail to anticipate a particular combination of path and state
variables, and our linkmesh screws up.

Here’s an example of loss of control from a distantly related field: lawmaking.
After all, lawmaking is an indirect process. Police don’t stand over every citizen,
evaluating each person’s behavior and making snap judgments as to what is right
or wrong. Instead, we have abstract laws that attempt to define precisely what
kinds of actions are unlawful, and then police and courts apply those abstract laws
to particular instances of human behavior. Sometimes the lawmakers fail to antici-
pate one of the paths through the legal linkmesh. So it was in the 1970s, accord-
ing to a possibly apocryphal story I have been told. A furniture maker decided to
build a furniture factory in a poverty-stricken parish in Louisiana. He’d get cheap
laborers, and the region would get desperately needed jobs. 

But wait! Congress had passed a new law designed to prevent the increase
of air pollution, and it was quite clever. Recognizing that some of the pollution
emanating from factories is impossible to prevent, the law did not require new
factories to achieve zero emissions. Instead, itthey required the owners of new
factories to approach other factories in the area and purchase for them equip-
ment that would reduce their emissions by the same amount that the new fac-
tory would add. This would yield the most cost-effective way to keep emissions
stable, because there would always be some filth-belching factory that could, for
a small cost, be made a bit cleaner. Everybody was quite proud of this new law;
it seemed to strike the best balance between environmental protection and eco-
nomic development.

6490 AID Chapter 18  10/18/02  4:58 PM  Page 221



222 Chapter 18

Unfortunately, this particular area of Louisiana was so poor that there were
no factories in it at all—this furniture factory was to be the first. Ergo, it was
impossible for the furniture factory to obey the law; there were no emissions to
reduce in the first place.

Everybody scratched their heads about this problem for a while. The
Environmental Protection Agency, charged by Congress with enforcing the law,
was loathe to make an exception; with the amount of money at stake nation-
wide, a single exception could trigger a host of lawsuits demanding special
exemptions for everybody else. Particularly frustrating was the fact that the fac-
tory’s emissions would be a small amount of shellac and other heavy organic
compounds: not pristine stuff, but nowhere near as insidious as many of the
chemicals used by modern technology. In fact, many deciduous trees emit tiny
quantities of the same stuff from their leaves as part of the photosynthetic
process. This generates a bluish haze that can be quite thick in areas blessed
with huge deciduous forests, such as the Great Smokey Mountains (the tree-haze
is the reason for their name).

Somebody put two and two together and hit upon the solution. Everybody
agreed that this would in fact satisfy the requirements of the law. And so it was
that the owner of the factory bought several hundred acres of forest and cut
down every last tree—thereby eliminating a source of pollution approximately
equal to the pollution the factory would add.

This is an example of lawmakers’ losing control of their linkmesh. And if
you don’t watch out, you will surely do something just as stupid someday.

Lawmakers don’t have any control over the complexity of the situations they
face; you do. If you equip your design with so many state variables of such com-
plexity that you don’t understand it, you will lose control—guaranteed. Therefore,
the best strategy is to use only a few simple Boolean variables in your first
designs, and then expand the size and complexity of your state variables as you
develop experience.

Historybooks

As I mentioned earlier, an ideal linkmesh gives no clue to the user’s history;
this means that, if you wish to use the user’s history, you must store that history
in a data structure that I call a historybook. A well-designed historybook permits
the implementation of the limitless undo capability I describe in Chapter 19.
There’s lots of useful information buried in a historybook, if you’re willing to
look at it statistically and make some soft-math calculations. For example, a his-
torybook makes possible a reasonable “intrusive macro facility.” Given a
moment of user inactivity, a program could scan the historybook, looking for
patterns of behavior. Well-defined patterns of input could be noted, as well as
the differentiating factor in each case. At this point, the software could inter-
rupt the user and offer to carry out the repetitive task, with the user supplying
only the distinguishing data. The degree of intrusiveness of this agent could be
made adjustable by the user.

Some designers object that a historybook would require prohibitively large
amounts of RAM. I disagree. A historybook is a record of user activity; how

6490 AID Chapter 18  10/18/02  4:58 PM  Page 222



Linkmeshes 223

many bytes of data can a user enter in a single session? You need store only 10
bytes of data to record every user action: the location of the mouse cursor at the
moment of the event, the content of the event (mousedown, mouseup, keypress,
and so on), and the time of the event. If you want to get snazzy, you could make
the record extensible with another 4 bytes. Even a busy-beaver user typing and
mouse clicking at the rate of two events per second, working without a break for
an eight-hour work session, would require only about half a megabyte of RAM
to store all that work.

As I mentioned earlier, ideal trees have their historybooks built directly into
their structures. Ideal linkmeshes carry no history whatsoever in their struc-
tures. Ergo, a linkmesh with a historybook, provides everything that a tree can
provide, and it’s easier to build. And when you add state variables, you have an
immensely more powerful structure with which to design.

In interactivity design, you should think in terms of linkmeshes, not trees. A linkmesh
is unique in three ways. First, it has linkages that loop back to earlier nodes, thereby
weakening the absolute directionality of trees. Second, it requires state variables to
differentiate repeated passes through the same node. Third, it requires a historybook to
function best.

6490 AID Chapter 18  10/18/02  4:58 PM  Page 223



6490 AID Chapter 18  10/18/02  4:58 PM  Page 224



19
P L A Y

Play is fundamental to interactivity. It is the original
educational technology, dating back millions of years.

Despite our protestations of deadly seriousness, play per-
vades much of our culture. The most important rule emerg-

ing from an understanding of play is the requirement of safety.
Play has two major ingredients: agon (competitiveness) and paidaia
(frolic). We must keep them separate.

A Naughty Metaphor

To understand interactivity, we must look deeper into the human soul and com-
prehend the fundamental human drive that renders interactivity so powerful.
That drive is the instinct for play. Interactivity is only the outward expression of
play, the mechanism by which play is executed. To use a racy metaphor, interac-
tivity relates to play as copulation relates to love. The interactivity designer who
lacks a strong sense of playfulness is like the man who has mastered pelvic gym-
nastics but cannot love. I don’t have anything to contribute to the lore of love,
but I can cast some light on play.

6490 AID Chapter 19  10/18/02  4:59 PM  Page 225



226 Chapter 19

Understanding play is important to all interactivity designers, not just game
designers, because play is fundamental to our culture and our mental makeup.
From our brain’s point of view, interactivity and play are the same thing. Play is
what happens in a serious application. Yes, there’s a lot of work involved, but
especially in the crucial early phases, when a user is learning your program (and
deciding whether to commit to it), much of what happens is intrinsically playful.
It’s not child’s play; it’s mature play. The difference between child behavior and
adult behavior is not so great as to require an entirely new term; the difference
is a matter of degree. Kiddie food (candy) is blatantly pleasurable to eat,
whereas adult food has greater variety and depth, but it’s still a kind of food.
Kiddie reading (comic books) has bright, intense colors with strong lines, simple
characters, and polarized plots; adult reading covers a wider range of topics, has
more subtlety and less direct stimulation, and takes a great deal more effort to
appreciate, but it’s still reading. Kiddie video (cartoons) starts off with a bang; it
delivers the laughs within seconds of its opening. Adult video, on the other
hand, may take 30 minutes to set up its dramatic context. Whereas kiddie video
has simple, direct conflicts with clean outcomes, adult video twists many strands
together and delves more widely and deeply into human behavior.

Computer games are of a kind with candy, comic books, and cartoons, but
this reflects the failure of computer game design, not any intrinsic limitations of
the medium. Adult play is surely deeper and more subtle, takes more effort, and
covers a wider variety of topics than child play. Consider these examples:

• The owner of a small business putting nice creative touches on her company
newsletter 

• The corporate drone dedicating long hours to the creation of a multimedia
extravaganza for a meeting presentation

• The market researcher fiddling about with the customer database to find
odd combinations of customer types 

• The news reporter carrying out background research on the web, getting
carried away following fascinating but marginally relevant threads

These are all play behaviors. Yet they are also work behaviors. The two are
inextricably interwoven. And they are certainly no waste of time. All of these
workers are expanding their skills by trying out new ideas, exploring new areas.
Has anybody noticed how easily and smoothly American business picked up all
the skills necessary to use personal computers? Typing, file management, back-
ups, email, spreadsheets, word processors—millions of people picked up these
skills in a matter of a few years, and most of them trained themselves without
going back to school. Adult play made this economic miracle possible.

6490 AID Chapter 19  10/18/02  4:59 PM  Page 226



Play 227

Historical Roots of Play

Play is often thought of as a modern creation, an indulgence of the leisure class
made possible only by the modern ability to provide food, clothing, and shelter
with less than full-time labor. On the contrary, play’s historical roots go back
much further than Thorstein Veblen; they predate even the evolution of
humankind. 

Let’s jump way back in evolutionary time, all the way back to the origin of
felines. What, precisely, are kittens up to when they play? We all acknowledge
that they’re having fun, but they are actually engaging in serious educational
pursuits. Their antics are focused on three activities: stalking, pouncing, and
wrestling.

Stalking, the delicate task of closing in on prey without alerting it to the
hunter’s presence, demands more than soundless movement; the hunter must
keep the prey under constant, intense observation so as to notice prey suspicion
behavior and freeze accordingly. Yet the cat must also plot a noiseless path
through twigs, dry leaves, and grass; how can she allocate her limited optical
resources between the two tasks? With practice, she learns to recognize prey
behaviors likely to prolong prey inattention for long enough to divert the eyes to
path scanning. Of course, this requires practice.

The pounce is the crucial act of the hunt; a well-executed pounce ensures
success just as surely as a poorly executed pounce guarantees failure. At such
close ranges, the probability of detection grows perilously high; hence, every
centimeter of additional pounce range is precious. But the transition from stalk-
ing posture (loose, extended, delicately balanced) to pouncing posture (tight,
compact, square) involves major body movement and diminishment of the view
of the prey. Ideally, the pounce itself should be executed silently even though it
necessitates a violent exercise of musculature. A higher arc is preferable, as it
provides some scanning time to precisely locate the prey and position the paws
perfectly, and it keeps the cat out of the prey’s horizontal visual field longer.
Again, the many fine judgments involved cannot be conveyed through the
genes; they must be learned through experience.

Last comes the actual kill. Here the cat faces the most dangerous problem.
While a mouse’s claws are tiny, what with all the thrashing about they can easily
damage the delicate structures of the eye. How can the cat bring her killing
weapons (her teeth) to bear on the prey when the most vulnerable part of her
anatomy (her eyes) are just two centimeters away from her teeth? Again, there is
only one answer: experience.

Any cat who would acquire this vast compendium of experience through
actual mouse hunting would surely starve before mastering the lessons. Hence,
play. Kittens stalk, pounce upon, and fight with each other, thereby learning the
skills of survival.

6490 AID Chapter 19  10/18/02  4:59 PM  Page 227



228 Chapter 19

Evolution and Play

Thus, play arose during mammalian evolution as the natural method of educa-
tion. Play is the behavioral analogue of genetic mutation. Just as mutations gen-
erate random changes in the DNA that are then tested against the objective
realities of the creature’s ecosystem, play generates random behaviors that are
tested against the objective realities of the playmate’s responses. The kitten
quickly learns that an attempt to bite her playmate’s face is easily countered with
the forepaws; an attempt to bite the belly founders against the powerful kicks of
the hind legs. If, for some random reason, the kitten attempts to bite the back
of the playmate’s neck, she encounters no effectual resistance. This, then, is the
ideal way to dispatch prey, but it is always learned by play experience. By shift-
ing adaptation from genes, which can generate at best one trial per generation,
to behavior, which can generate several trials per minute, mammals are able to
adapt thousands of times more rapidly.

Most mammals play, although the nature and extent of play behavior varies.
Herbivore play is confined to mobility play (running, jumping, and the like) and
hierarchy play (butting heads). Carnivore play tends to be more extensive,
because carnivore food is a lot more interactive than grass. Primate play is even
richer, and hominid play is the most complex of all. There are many answers to
the question, “What differentiates us from other animals?” but one correct
answer is surely, “We play more.”

The most basic form of play is the gambol: jumping, running, and other-
wise exercising the coordination of whole-body musculature. We see this form
of play executed by almost all mammals and birds; it is a necessary means of
learning how to coordinate the musculature. The phylogenetically earlier orders
(fish, amphibians, and reptiles) are born fully coordinated; they are motor com-
petent from the moment they hatch. But mammalian babies stagger about
dizzily upon birth; they have no idea how to get all those muscles working in
unison. It takes weeks or months of play to get everything working together.
Human infants add vocalization to the standard gamboling play behavior. With
its more prolonged childhood, human gambol play covers a wider range of activ-
ities, from simple running and jumping to more complex sports and games
involving balls, fields with lines, and specialized rules. We even extend the gam-
bol play into adulthood in the form of dance. 

The point here is that play is not a historical accident or a frivolous diver-
sion; it is a fundamental behavioral trait that serves vital needs. It is wired into
our brains.

Play and Culture

Play is so fundamental to human existence that we seldom notice its pervasive-
ness. Johan Huizinga pointed out the ubiquity of play in Homo Ludens: A Study of
the Play Element of Culture—an important book that I strongly urge you to read.
He defines play as a voluntary activity, confined in both spatial and temporal
dimensions, with formal rules. Huizinga proceeds to examine the play concept
in a wide variety of human activities. I was astounded by his revelations about

6490 AID Chapter 19  10/18/02  4:59 PM  Page 228



Play 229

the universality of play. It shows up everywhere; Huizinga has chapters on play
in law, war, art, philosophy, and poetry. Consider, for example, the law. It takes
place within fixed limits of time and place: a trial in a courtroom. It is con-
trolled by an extensive set of rules that are freely accepted (albeit by the people
as a society, not as individuals) and absolutely binding. And there is certainly a
feeling that a court of law is not ordinary life. The law takes place in its own lit-
tle world, isolated from the rest of the world, and with a strong system of rules.
Does that not sound rather like a game, or at least play? And why is it that the
law has so many rituals? In Britain, barristers and judges alike still wear wigs.
Why? They are playing, not in the sense of childishness or exuberance, but
rather in the sense of isolating themselves from the real world to create a little
self-contained world of justice. Nevertheless, a court of law shares much with a
basketball court or a tennis court.

Moreover, the play concept permeates many aspects of our culture that we
do not think of as intrinsically playful. When you’re at a special place, during a
special time, then special rules apply to your behavior. In a football stadium dur-
ing a game, you are permitted to wear funny hats and to vent your aggressive
instincts with greater freedom than would be permitted in normal life. At the
theater, the reverse is the case: you play at elegance and overwrought civility; the
theater frowns on an ill-timed cough even as the stadium applauds a mega-
phonic burp.

A revealing manifestation of play behavior is the establishment of costumes
for a wide variety of roles. Bicyclists have their skin-tight attire, motorcyclists their
leathers, and skiers their bright colors. You wear one kind of costume to play bas-
ketball, another for baseball, and a third for football. To what extent are these
costumes truly functional, and to what extent do they serve to justify abnormal
behavior by identifying the player with a role in which such behavior is expected?
When I exchange my slouch hat for a tuxedo, my vocabulary jumps several grade
levels. Do clothes make the man or do they make the role he plays?

Even some of our deepest religious and ethical ideas are founded in play.
Why should we believe in the devil? Here is a personification of evil, a playful
way of taking a complex subject (evil) and giving it human form (devil). Even I,
an atheist, find it useful to talk about complicated issues of good in terms of
god and the devil. To what extent are such references a matter of play or a mat-
ter of mentation?

Why is it that humor pervades all human interaction? Even the most serious
of our activities is not immune to humor. In the midst of delicate arms control
negotiations in Moscow, Henry Kissinger relates that a pause was reached when
photocopies of working documents became necessary. He suggested that they
simply hold the documents up to the chandelier. Everybody laughed. His Soviet
hosts demurred. “Those cameras are too old; they were installed during Stalin’s
day. Why don’t we use the cameras in the wooden paneling?” More laughter.

Oral arguments before the Supreme Court have been punctuated with
jokes. In my oral examination for my master’s degree, I replied to a tricky ques-
tion by cracking an obscure academic joke; my answer was accepted. Alan
Shepard hit a golf ball on the moon. A desperately wounded German soldier in

6490 AID Chapter 19  10/18/02  4:59 PM  Page 229



230 Chapter 19

Italy in 1943 asked a nearby American to give him assistance in relieving him-
self. As the American helped out, the German smiled weakly and asked, “Do
you realize that you’re giving aid and comfort to the enemy?”

Play and Language

The word play has been applied with such catholicity that it is now verbal mish-
mash. My Webster’s Unabridged Dictionary requires 21 column inches to define all
the variations of the word play. The elementary verbs go, eat, and do require only
18, 5, and 8 column inches, respectively. For some reason, the word play is guilty
of some kind of semantic imperialism, arrogating to itself vast tracts of semantic
territory.

Huizinga addressed this issue with greater depth in his chapter titled “The
Play Concept as Expressed in Language.” He analyzed the way in which various
concepts of play are expressed in a variety of languages. The lesson that
emerges from this is that the concept of play extends over a huge range of activ-
ities. There is, of course, the conventional sense of play, but there is also the
play of ideas, swordplay, play as the freedom of motion of a machine part, play-
ing a musical instrument, a stage play, and the various erotic connotations of
play (in German, a child born out of wedlock is called a Spielkind, literally, “play
child”). The English word lechery is the only surviving remnant in English of the
Old Germanic root leik, leikan, to play. Also striking is the fact that the Latin
word for play, ludere, survives in English in lewd.

But there is another aspect of play that emerges from this linguistic analysis,
and that is play as simulation. In Japanese, the most polite or formal means of
expression is called asobase kotoba, literally “play language,” and it communicates
the notion that those we speak about are so refined that they only play at life.
Thus, the polite way to say “I hear that your father died” is “I hear that your
father has played dying.” Even more striking are such words as allude, collude,
and illusion, all of which are derivatives of the Latin ludere, and all of which refer
to a sham, shadow, or simulated reality.

Consider the deep playfulness of language. What is a metaphor but a play
on words? Why do we say “slower than molasses in winter” when we could just
as easily say “very slow”? Why would we refer to the unreelected holder of the
most powerful political office on the planet as a “lame-duck president”? 

Play and Mentation

Two deep concepts emerge for me on contemplation of Huizinga’s work. The
first is the notion of play as modeling; the second concerns the subjunctive
nature of play. When we play, we create our own little world that follows our
rules. Unlike the real world, our play world makes sense. In the real world, good
men die while evil men prosper, things break for no apparent reason. crops fail,
the weather jiggles about arbitrarily. We feel at the mercy of arbitrary forces in
the real world. But in our play world, we control the rules, and our rules make
sense. There’s a satisfying predictability in the play world. It’s a world you can
believe in.

6490 AID Chapter 19  10/18/02  4:59 PM  Page 230



Play 231

The other aspect of play is its subjunctivity. We play “if-only” in our games.
Once we have erected our imaginary world, we then explore it with experimen-
tal behaviors too risky to try in the real world. I shall have more to say on sub-
junctivity in Chapter 29.

These two concepts of play—modeling and subjunctivity—strike me as enor-
mously important. They are the basis of something important about mentation.
Modeling boils the world down to a clean subset, and subjunctivity explores the
characteristics of that subset. This, it seems to me, is the foundation of creativity.
The world is a complicated and messy place; we don’t know what it will do next.
By modeling the world in some fashion, we create a mentally manipulable ver-
sion of the world. There are zillions of ways to model the world; we are always
creating new models. A playful person is particularly good at making models.

When a little boy holds a stick in his hand and makes appropriately wet
noise with his mouth, spraying saliva all over himself, and then swoops the stick
down to a leaf on the ground and makes a loud explosive sound, he is modeling
a jet bomber. You and I see a little boy spraying saliva on a stick and a leaf, but
he has created a mental model of jet bombers.

By manipulating our model subjunctively, by asking what- if about its per-
formance, we develop new insights into the world. Early developments in metal-
lurgy were derived from the realization that molten metal is “just like water.” I
very much doubt that anybody ever successfully tested that hypothesis by direct
sensory evaluation. But by thinking of molten metal as if it were water, early
humans created the thought that it might be manipulated like water, by pouring
it from cups. This realization catapulted us out of the Stone Age.

I am therefore tempted to ask, is there any aspect of human mentation that
cannot be described in terms of model making plus subjunctivity? If not, what
does that suggest about the place of play in the human mind? What I find so
exciting about this line of thought is that it suggests that play behavior is deeply
connected with human thought. Play behavior is not an aberration, nor a
sideshow, nor idle recreation; somehow it is closely tied to the way that we think
about the world.

Example: One of the most sensational intellectual developments of the last
100 years was Einstein’s theory of relativity. There were actually two theories:
special relativity and general relativity. What is most intriguing here is the trig-
ger point for both theories. In both cases, Einstein could put his finger on the
mental step that triggered each theory. In the case of special relativity, Einstein
asked himself, “What would it be like to ride on a beam of light?” Think about
the fundamental playfulness of this image. This is not hard, cold science; this is
not abstract equations and formulae; this is a playful concept, a what- if game.
And it was the trigger point for the theory of special relativity. Once Einstein
started to answer these questions, his theory came tumbling out of the intellec-
tual woodwork almost naturally. The same thing happened with general relativ-
ity. Einstein asked himself, “What would it be like to stand inside a closed
elevator in space? How would you know if you were in a gravitational field or
being accelerated?” This playful question led to the Principle of Equivalence,
which in turn led to all sorts of conclusions about the nature of space and time.

6490 AID Chapter 19  10/18/02  4:59 PM  Page 231



232 Chapter 19

Play Requires Safety

The foremost requirement for play is some provision for safety. The slightest
inkling of danger will halt kitten play instantly. Many people, when first attempt-
ing some new skill, will do so only in privacy; it is socially dangerous to be seen
as a bumbling incompetent. Indeed, this is one of the secrets behind the success
of the personal computer: people can sit down with one and play with it behind
closed doors, learning how to use it without the embarrassment of a teaching
session. The original Olympic Games in Greece imposed a truce on all warring
factions during the period of the games; any perceived danger would ruin the
atmosphere of athletic competition. 

Safety extends further than the avoidance of mortal threat. The safety must
be complete: physical, social, financial. Many people avoid game playing because
they fear the social consequences of failure. Men and women always have diffi-
culty playing together because men seek play dominance, which women find
socially risky.

Even gambling falls under our conclusions about play. There are two groups of
gamblers: playful gamblers and serious gamblers. Playful gamblers set aside some
money to lose, treating it as an entertainment cost. Hence, they are not engaging
in financial risk; they have already written off the money before they begin. Serious
gamblers are taking financial risk, and they certainly are not playing.

Prejudice against Play

While play is universally conceded to children, many cultures place restrictions
on overt adult play, driving much play behavior underground. Some playful
adult activities are acceptable, while others are considered childish. Such stric-
tures are enforced through standard socializing methods, which are powerful
influences on our behavior. These are some of the common expressions we use
to pressure others to refrain from play:

• “Grow up!”

• “Enough of fun and games” 

• “When I was a child, I acted as a child. . . .” 

• “Act your age!” 

• “This is not a toy”

• “That’s a Mickey Mouse course”

• “Are we having fun yet?”

• “That’s not professional behavior.”

The last few decades have seen a loosening of the strictures against play in
this culture, but we remain uncomfortable with the notion of adults at play. This
made some sense in the harsher economic conditions of yesteryear, which
forced a child to accept a productive role early in life. In our times, however,

6490 AID Chapter 19  10/18/02  4:59 PM  Page 232



Play 233

economic productivity is primarily the result of education, and, as I explained at
the outset of this chapter, play is the original technology of education. Thus, the
tables have been turned on us; our well-developed mores against play are now in
direct opposition to economic realities. I suspect that the USA, the quick-
change, plastic-fantastic culture of the planet, will figure this out and embrace,
develop, and refine productive adult play. And guess who’ll be at the forefront
of that social tidal wave?

Applying Play to Interactivity Design

So far I have only mouthed some of the vague universal truths about play; I now
seek to explain how these truths can be applied in the real world of interactivity
design.

When I was an undergraduate student at the University of California at
Davis, the aggie school of the UC system, I learned a fascinating truth: cattle will
more readily walk through curved fenced ways than through straight ones with
corners; it seemed to have something to do with bovine curiosity. If you’ve ever
tried to coax a half-ton cow into its proper enclosure, you can appreciate the
value of this truth. In much the same way, you as interactivity designer must
coax your user into discovering how to use your software effectively. You can put
your shoulder behind his butt and give a mighty shove with a four-hundred-page
user manual, but that seldom moves him more than a few inches, and there’s
always the possibility of a fecal reaction.

The trick, then, to motivating your users in the most productive direction is
to engage their playfulness. Your highest priority is to encourage a sense of play-
ful experimentation. From the uninitiated user’s point of view, your software is
an unknown tangle of opportunities and dangers. Your familiarity with the
design blinds you to the imagined dangers the users fear; you have always
walked across the room in daylight and cannot understand your users’ darkness
paralysis. Unlike you, the users can never truly know what lies inside the room,
for they have never seen the design from the inside out as you have. Your users
are attempting to move around inside a darkened room you have created; if you
litter the floor with obstacles, the users will quickly learn to creep slowly along
the floor, clinging to the few trusty landmarks they know. Instead, you want to
keep the floor absolutely clear and the room laid out with such order and clean-
liness that the user can dance from one corner to the other, confident despite
the darkness.

This may sound like mere fanciful metaphor, harmless, cute, and without
practical application, but I argue here an unorthodox position very much at
odds with conventional practice. If you should doubt the significance and con-
troversiality of my admonitions, I refer you to a commonly heard assertion:

“The Macintosh is just a toy.”
I have no wish to partake in the platform wars pitting Apple Apostles

against Microsoft Maniacs; that war is over. Microsoft won, and there’s no point
in refighting that nasty little conflict. In raising this issue, I am unconcerned

6490 AID Chapter 19  10/18/02  4:59 PM  Page 233



234 Chapter 19

with the advantages or disadvantages of either platform; my point is focused
narrowly on the attitude behind the preceding assertion and its implications for
interactivity design. Whether the Macintosh is or is not a toy is irrelevant; what’s
important is the fact that plenty of people are willing to characterize it as a toy
in order to dismiss it as a computer. They readily acknowledge its playful charac-
ter and hold this playfulness against it. The unstated assumption is the old
Puritanical notion that playfulness is unproductive. This attitude remains just as
strong now as at the height of the platform wars; just four weeks before writing
these words, I received an email from a software designer noting that I use a
Macintosh, and asking when I was going to purchase a “real computer.”

It is imperative that such thinking be utterly banished from the minds of
software designers if we are to advance interactivity design. I am not arguing
that good designers use Macs; what’s important is not the machine but the
design philosophy. Playfulness is not a liability, it is an asset, and we should
acknowledge the fact that the Macintosh design is more deeply playful than that
of Windows.

A playful design philosophy will certainly indulge in occasional cuteness,
although cuteness is neither a necessary nor a sufficient condition for playful-
ness. If an alert sound can be cutely pertinent (perhaps “Ah-ooga!” for an auto-
motive program), such an indulgence can’t hurt unless the sound becomes
grating upon repetition. Use of color, delightful imagery, and other cosmetic
factors can also be of some value. However, it is more difficult to actively
encourage playfulness than to take care not to discourage it. You can lead the
user to the playground, but you can’t make her play; and it’s depressingly easy to
discourage the user from playing. Hence, the most useful advice I can give you
is negative in format:

Don’t Chastise Your User

Remember that play takes place only when users feel safe. They surely prefer to
learn your software in privacy; do not intrude on that privacy by injecting judg-
mental elements into your design. If an error condition arises and you must
notify the user of that error condition, your wording must clearly assert that the
problem lies with the program’s limitations, not the user’s mistakes. In interactiv-
ity design, “The customer is always right” translates to “The user can never make
a mistake.” Don’t hit her with the error message “You entered too many vari-
ables!”; don’t even say “You are not allowed to enter that many variables.” The
only way to phrase this kind of error message is “I’m sorry, but I’m too stupid to
handle that many variables. Could you please redo your input so it doesn’t use so
many variables?” The acknowledgment button to dismiss the error message
should not be worded with an unapologetic “OK”; it should reinforce the mes-
sage that the user didn’t do anything wrong, that the problem lies with the soft-
ware. My favorite label for such messages is “Shoot the programmer!”

Of course, recourse to error messages is an admission of failure to design
well; a well-designed program has no error messages because the designer has

6490 AID Chapter 19  10/18/02  4:59 PM  Page 234



Play 235

already made error conditions impossible. Any software that can detect an error
condition after the fact can anticipate the error condition before the fact. Don’t
ever fall for the programmer’s line “That can’t be done.” It’s a lazy program-
mer’s lie, pure and simple. There are some situations, primarily involving key-
board input, in which the input of the user cannot readily be anticipated or
acted upon in advance, in which case obviating the error would present the user
with too many constraints. However, the problem here is in the realm of design,
not programming.

The best approach is to render error conditions conceptually impossible
rather than merely technically impossible. Here’s a simple example: You decide
to permit your user to assign up to eight names to some item in your design.
The worst implementation, as I have already noted, is to chastise the user upon
input of the ninth name. Slightly better is to dim the control that adds another
name when eight have already been entered—but this leaves the user wondering
why the control is dimmed. Better still is to put the names into a display box
that can hold only eight names, along with a provision to enter a new name by
clicking in the empty space. Gee, if there’s no empty space left, there must not
be any possibility of entering more names.

This admonition is a well-known rule of good user- interface design. My con-
tribution lies not in repeating old saws, but rather in formulating a higher level
of explaining them; this permits us to develop and expand the admonition. The
important and easily learned negative rule here is: don’t ever, ever do anything
that might inhibit your user’s playfulness. 

Positive admonitions are harder to come by and are highly context depend-
ent. However, I can cite one general rule derivative from the need for safety.
This rule is encapsulated in the following heading.

Everything Must Be Completely Undo-able

Your users can’t feel safe unless they are confident that anything they do is
reversible. Imagine yourself in an unfamiliar situation, trying to decide what to
do next, but you know one thing for a certainty: anything you do will be irrevo-
cable. Once you take that plunge, you’re unconditionally committed. How many
times have you balked at such an irrevocable decision? I know men who just
can’t make a decision to get married, only because the decision requires com-
mitment—irreversibilty. Yet marriage is a lot more reversible than many software
operations.

Here, then, is the first design rule: every single verb you provide your user
must be undo-able. Some programmers will, of course, complain that this is
technically impossible. Not so! As a programmer, I know that the majority of
software verbs are easily reversible. Some require more labor, the creation of
more complex undo buffers. And a few, I agree, are difficult to undo. But undo-
ability is never theoretically impossible. It’s primarily a matter of how much
work the programmer is willing to do. A secondary consideration is sometimes
the expenditure of memory required for the undo. However, now that it is com-
mon for a program to demand megabytes of RAM, we can afford larger buffers

6490 AID Chapter 19  10/18/02  4:59 PM  Page 235



236 Chapter 19

for the Undo command. Recall, moreover, my earlier calculation that the
amount of RAM commonly available now greatly exceeds the amount of infor-
mation that a user can enter. We now have a large enough supply of bread-
crumbs to retrace any path.

I therefore claim that we should provide undo-ability for the user’s entire
session with a program. In other words, the user should be able to go back to
any point in the work session. There are two ways to accomplish this, and I
think we should use both simultaneously. Both require us to keep track of every
action taken by the user. The first allows the user to step backward action by
action. In effect, the user says, “play back for me every step I have taken, but
play them backward, until I say stop.” The other approach is to work forward
from some established starting point. The most obvious starting point is the
most recently saved version of the work, but the user should also be able to
specify other starting points by the time of their occurrence. In other words,
our user would be able to tell the computer, “Go back to where I was five min-
utes ago. Then start playing my actions back to me in forward order. Stop when
I click the mouse button.”

I can see only two situations in which this would be technically impossible:
first, those in which the computer obtains information from external sources,
such as from a now-ejected floppy disk, a network, or environmental sensors. If
the external source has changed in the interim, then undo-ability might not be
possible. But this is only a possibility; undo-ability is certainly worth a try in such
circumstances.

The second irreversible situation arises when the user input is not discrete,
such as in a painting program when a user draws a wiggling line by holding
down the mouse button and dragging, and the positions of the mouse at every
point along the line are significant. The buffer to handle such an event would
require several kilobytes of RAM; a great many such events would add up to a
prohibitive amount of RAM. Even in this situation, infinite undo could still be
implemented by saving the work file whenever the undo buffer grows full.

One way to limit the size of the undo buffer is to discard old actions. If the
user has been editing a document for the last three hours, the need to return to
the state of the document two hours and 45 minutes ago is microscopic. This is
true, but the importance of undo-ability is not the actual execution but the sense
of safety it imparts. If you’re walking a tightrope, you want to know that there’s a
safety net underneath you. If you discover that the safety net has holes in it, even
holes that you’ll almost never encounter, your sense of safety still will be shat-
tered. The purpose of infinite undo-ability is to banish fear, and fear is never a
rational creature; it can be dispelled only with ironclad guarantees of safety.

A particularly irritating failure is the refusal of many text editing and word
processing programs to implement the undo feature for global search-and-
replace operations. The objections to such an action are based on assumptions
that the undo buffer must be kept small. A willingness to allocate, say, a

6490 AID Chapter 19  10/18/02  4:59 PM  Page 236



Play 237

megabyte of RAM to the undo buffer would easily permit undo-ability for global
search and replace.

A secondary benefit of infinite undo-ability is the elimination of all those
damnable “are you sure” dialog boxes. If everything is undo-able, there’s no
need to double-check for accidental entries; they can always be reversed. 

Infinite undo-ability does impose a new requirement on the program: it
must be able to display the stack of undo-able commands. A user wishing to
return to a point 10 steps back should not have to recall each step and its
effects; a list showing those steps in their proper order can clarify the situation. 

Again, I stress that none of this is technically impossible or even difficult; I
have implemented all of these features in my Erasmatron program, which has
some two dozen active data-entry windows and half a dozen completely different
types of data entry. It took me less than a month; a good programmer should
be able to do better.

All Experiments Must Yield Clear Results

Recall my description of play as a series of experiments. The user playing with
your design will try a variety of experiments, and this is desirable. A few of the
experiments will succeed, but most won’t. I have already explained that you
should not chastise the user for a failed experiment; now I take the concept
even further: every experiment the user attempts must generate some kind of
response. The user needs to know whether the experimental behavior accom-
plished anything, so you must acknowledge the experiment. 

This feature is simple to implement; when you process the user’s input, you
attempt to recognize every input as meaningful. If you come across an input that
makes no sense, issue a simple response. I prefer an inquisitive grunt for this
response. The important thing is to make sure that the user knows that you saw
what he did.

Some Interesting Design Experiments I Have Tried

I once faced a situation in which the user might want to rapidly step through a
long sequence of simple operations, evaluating each by a simple criterion that
reduced to a binary result: yes, this is something worth looking at; or no, noth-
ing interesting happened. To ease the tedium, I added an audio indicator. I
could have used a beep or a boop or some other colorless noise, but I decided
to liven up the tedium with a bit of cuteness: the affirmative response was a
high-pitched “Meow,” and the negative response was a low “Woof.” Both sounds
were kept short in duration, so as not to irritate the user.

Another trick is the use of faces to communicate some emotion in dialog
boxes. Back in the bad old days, we had to use copy protection on our games;
this often involved a challenge dialog box demanding that the user enter the fifth
word from the fourth line on page 27 of the manual, or some such nonsense. I
was always embarrassed by these fascist techniques, but I acquiesced to their
necessity. My favorite version of the challenge dialog box showed a Nazi, com-
plete with monocle and scarred cheek, demanding to know “Are your papers in

6490 AID Chapter 19  10/18/02  4:59 PM  Page 237



238 Chapter 19

order?” In the Erasmatron, I embellished every cautionary dialog box with a
scanned image of Desiderius Erasmus. Adding a face to a dialog box humanizes
the interaction and encourages playfulness. Note also that facial expression is a
powerful means of communication. Again, you don’t want to use intimidating or
judgmental facial expressions. Here are some examples of what I mean:

The Dark Side of Play

In Homo Ludens, Johan Huizinga notes that the Greeks differentiated play into
two forms: agon and paidaia. The first term refers to play as a competitive activ-
ity, a deadly serious pursuit within constraining rules; the second emphasizes
play as a joyful activity. Thus, agon is the term we use to describe the activity of a
runner at the Olympic Games, while we apply paidaia to a child throwing a ball.

These two aspects of play have nothing in common; how can they be joined
in play? The catalyst that welds these two strangers together is interactivity. All
play requires interaction of some sort. In the simpler kinds of play, the interac-
tion need not be complex: the child throws the ball and it bounces back—from
the child’s point of view, this is surprising, interesting, and willful behavior on
the part of the ball. But as we grow, bouncing balls lose their fascination, and
we seek out interactive partners capable of richer behavior. Some of us, mostly
adolescent males, get sidetracked and fixate on computers as interactive part-
ners. Computers are such colorful and interestingly bouncy balls, and they are
risk free; they never hurt our feelings. But most of us seek out other people as
interactive partners, for the equality of interaction of social intercourse provides
the most challenging and complete form of play.

Interaction can take place only where there is a perceived discrepancy of
volition. The child throws the ball, in effect declaring, “You go away!” The ball
bounces back; in the child’s view, the ball answers, “No, I’m coming back!” The
various angles, energies, and spins with which the ball bounces back are per-
ceived by the child as manifestations of its volition. After much experimenta-
tion, the child figures out the laws of physics that determine the ball’s behavior.
This triggers a fundamental shift in the child’s perception of the ball. It is no
longer an agent with free will, capable of interacting with the child, but instead

Are you sure you want to
format the hard disk?

I don’t have enough
information to carry out your
request.

You’ve got mail!

6490 AID Chapter 19  10/18/02  4:59 PM  Page 238



Play 239

an inanimate object reacting according to natural laws. The now-volitionless ball
is left lying on the floor as the child seeks out new agents with which to interact.

Let us now leap ahead to the mature adult interacting with another mature
adult; this interaction represents the culmination of the long process that
started with the ball. Let us imagine their discrepancies of volition in simplistic
geometric terms. Where they are in perfect agreement, their volitions are paral-
lel; where they disagree most intensely, their volitions collide head-on; and there
are many intermediate cases where their volitions are at angles with each other.
Where their volitions are parallel, there is no surprise, nothing to learn. They
nod their heads in boring agreement. There is no information content in a field
of gray. Sameness yields nothing.

Only where we have some perceived discrepancy of volition do we have a
basis for interaction. How many times does a heated argument end with the
realization that it was all a misunderstanding, that the perceived discrepancy of
volition was not real—and now there is no longer anything to say, no basis for
interaction? How many times does a child initiate interaction with a parent by
fabricating a sham discrepancy of volition (being naughty to get attention)?

This explains the old and continuing failure to design successful cooperative
games. Play thrives on the noncooperative elements, and withers where there is
no discrepancy of volition. The child retains interest in the ball only so long as it
appears to manifest discrepancies of volition—to go where it “wants” to go. As
soon as the ball appears to obey laws of physics, the child loses interest.

This “blood and iron” philosophy of play may strike some as cynical, but I
see no pessimism about human nature in it. The ugliness arises from two deriva-
tive phenomena. The first is the unwarranted extrapolation of the basic princi-
ple to absurd extremes. If discrepancy of volition is necessary to interaction,
then greater discrepancy of volition yields greater interaction—right?

Well, it’s illogical, and it leads us to the dark, intensely violent, ugly game
designs in which the interaction takes its starkest form: kill or be killed. The
error lies in confusing a one-sided Boolean relationship with the converse pro-
portionality. This truth:

The absence of discrepancy of volition destroys interaction.

Greater discrepancy of volition yields greater interaction.

does not logically lead to this conclusion:

I will go so far as to concede that greater discrepancy of volition yields more
intensity in the interaction. But intensity is not the same thing as richness or
even quality. Greater amplitude does not make music sound better; more sugar
does not make food more tasty; brighter colors do not make a painting prettier.

6490 AID Chapter 19  10/18/02  4:59 PM  Page 239



240 Chapter 19

Agon in Paidaia’s Clothing

But my main point here concerns a much more subtle error, one that pervades
our civilization. It is the justification of agon (competitive play) through paidaia
(joyful play).

I shall refer to the justice system in the USA to demonstrate this poisonous
phenomenon. Do not think that the problem is confined to the justice system—
it pervades our political system, our business culture, and our educational sys-
tem. But I shall not waste your time with a tedious catalog of proofs; the
example of the justice system should suffice to show the principle.

One of the trends in the history of civilization is the substitution of play—in
its agonistic form—for conflict. For example, consider the evolution of systems
of justice. Early justice systems were nothing more than socially tolerated vendet-
tas. A clan would respond to a transgression against one of its members with an
attack against the offending clan. Each individual looked to his own clan for jus-
tice. A gigantic step forward came with the substitution of state authority for the
execution of justice. Thus was born the trial. But the earliest forms of trial took
the character of blood-thirsty games. There was trial by ordeal or trial by com-
bat. From our twentieth-century perspective, trial by combat is indistinguishable
from simple vendetta, but in fact it represents a great leap forward, for vendetta
is open ended, while trial by combat provides closure to the conflict. The rule of
the game is that the outcome of the combat determines the outcome of the con-
flict. Two knights thundering down the lists with lances leveled toward each
other represent the subtle shift of blood conflict into agon, and agon into
paidaia. The points of the lances are the blood conflict; the rules of the joust
are the agon; the pennants and cheering crowd are the paidaia.

After an English king was killed in such a joust, Western civilization shifted
the balance even further away from blood conflict, but the element of agon
remained unchanged. Within a century of that royal death, lawyers had so com-
pletely taken over the field of combat that Shakespeare was to write, “First, we
kill all the lawyers!” The key observation here is that the legal system remained
adversarial at its core. Instead of two knights charging down the lists in front of
the king, we had two lawyers verbally jousting in front of a judge. The confronta-
tion had been moved from the tourney field to the courtroom, and the blood
had been cleansed from it, but the agonistic nature of the interaction remained
unchanged.

There is no intrinsic reason why any system of justice need be adversarial in
nature. Our system is adversarial only because it evolved from earlier adversarial
systems, which in turn evolved from blood feuds. The modern lawyer can trace a
direct line of descent from the tribal warrior.

And here is where we encounter the dark side of play. Somehow, agon gets
mixed up with paidaia. Lawyers think that they are playing. They’re not in it for
the richness of the interaction; they’re in it for the joy of victory. No lawyer has
ever told me about a fascinating case that he lost. This agonistic element of their
work is socially corrosive, yet lawyers sweep it under the rug of paidaia and
rationalize it as a necessary element of a healthy justice system.

6490 AID Chapter 19  10/18/02  4:59 PM  Page 240



Play 241

By acquiescing to an egregiously adversarial mentality on the part of our
lawyers, we do for justice what the game Doom does for play. The richness—and
therefore the educational or revelatory value—of the interaction is lost in the
intensity of the confrontation. Yet the lawyer flashes his boyish grin and con-
fesses, “Aw, shucks, I just like to win,” and we indulge him his paidaia—and what
we get is agon.

The term play is a Trojan horse of paidaia concealing a deadly cargo of
agon. The rapist advises his victim, “You might as well just play along.”

6490 AID Chapter 19  10/18/02  4:59 PM  Page 241



6490 AID Chapter 19  10/18/02  4:59 PM  Page 242



20
A B S T R A C T I O N

As systems grow larger and more complex, they
develop higher levels of abstraction to cope with the

increasing complexity. Interactivity designers should
apply this lesson to their work. 

In this chapter, I’ll be taking a long and roundabout approach to one of the
deep ideas behind interactivity design. You’ll likely find yourself growing impa-
tient with the digressive nature of the material, but hang in there: the point I
make is abstruse, and the preparatory material is necessary. In the next chapter,
I’ll show how this theory is applied.

Financial Abstraction

I begin with an examination of the development of financial structures. The ear-
liest economic activity between sovereign groups took the form of direct
exchange: “I’ll give you this chunk of flint if you’ll give me that cow.” Because
such transactions are as explicit and direct as possible, they are easy to evaluate
and police. One party examines the cow, the other party examines the flint,
they each see what they’re getting, and once the exchange has been made, there
is no further cause for interaction. Thus, the earliest forms of financial transac-
tion were direct, explicit, utterly without abstraction.

The first level of abstraction was the introduction of money as a medium of
exchange. Metals—not just precious metals such as gold and silver, but even base

6490 AID Chapter 20  10/18/02  5:01 PM  Page 243



244 Chapter 20

metals such as copper, lead, and tin—enjoyed a special position in the economy
because (1) demand always exceeded supply, and (2) they were imperishable.
The profound significance of this lay in the fact that a bar of metal could always
be traded for something else, and, the nub of the matter, that everybody knew
that it could always be traded for something else. Thus, if you offer me a bar of
copper for my cow, I may not myself be interested in the bar of copper, but I
know that I can always trade it to somebody else for something that I do want.
Thus, I am willing to make the exchange. 

An important point for later: This scenario presumes some population den-
sity and trade. If I don’t run into many people willing to make trades with me,
then I can’t be so certain of finding a buyer for my bar of copper. The more
people there are, the more confident I can be of finding a buyer.

There were only two drawbacks to the use of metal as a medium of
exchange: First, there was the problem of knowing exactly how much metal you
were getting. This problem was quickly solved by the introduction of simple
scales for measuring weights, but it did impose a certain amount of hassle on
the economy. The second problem was much tougher. People quickly learned
the trick of alloying metals, mixing baser metals with precious metals and then
passing off the result as pure precious metal. Just about every combination was
used in ancient times, and it made trade more difficult. A variety of counter-
measures were used, such as the touchstone, which, when rubbed against gold,
showed a distinctive mark that roughly but unambiguously indicated the purity
of the gold. Still, something better was needed.

That something better was the introduction of money. The new idea here was
to have the government manufacture chunks of precious metal of guaranteed
weight and purity. The government put its imprint on these chunks as a declara-
tion of their honest value. Counterfeiting these chunks proved to be an expensive
and difficult process; the cost of setting up the blast furnaces and striking molds
was so high that you could recoup your cost only by making lots of counterfeit
coins, and in the impecunious economies of those days, any operation moving
large amounts of gold and silver would surely attract lots of attention and official
curiosity. Thus, coinage provided a ready solution to the problem.

Of course, it also cost the local government to set up the mints, but if the
city was big enough, the costs could be spread over many consumers and made
worthwhile. Again, it was ever-bigger economies that both demanded coinage
and made it worth the expense.

But note how coinage moved the economy to a higher level of abstraction.
Now all fiscal accounts were kept in the otherwise arbitrary units of coinage. A
rich man might be worth 10,000 tetradrachms—what does that mean? In a sim-
pler economy, a man’s wealth might be measured by the number of cattle he
owns. That makes sense. But this—well, it’s more abstract, isn’t it?

The next big advance in financial abstraction was the concept of debt. It’s
only a small step from “I’ll give you one drachma for your cow” to “If you give
me your cow today, I’ll give you one drachma tomorrow.” And then it’s an even
smaller step to extend “tomorrow” to, say, “next year.” Of course, as soon as we
talk about long-term debt, we get into problems of recording the debt. After all,
I might conveniently “forget” my debt to you, or die before the debt is due. The

6490 AID Chapter 20  10/18/02  5:01 PM  Page 244



Abstraction 245

obvious solution is to write down the debt and give the lender the piece of
paper: an IOU.

In those days, travel was hard, slow, and dangerous. Wealthy people, the
kind of people who wrote and received IOUs, were constantly on the move.
Collecting on an IOU often proved a difficult matter. This led to a new level of
abstraction: third-party collection. Here I am in Venice, with an IOU from you
for 1,000 ducats. Unfortunately, you’re in Bruges, hundreds of miles away. 

I run down to the local banco, an operation set up by one of the wealthier
citizens of the community, and hand him the IOU. He recognizes the signature,
knows and trusts the debtor, and figures he’ll have no problem collecting when
the debtor gets back in town. So he pays me the value of the IOU—less a small
handling fee, you understand.

This was an immensely important leap in abstraction, because for the first
time, the concept of “value” was divorced from a tangible object. Instead of
transferring wealth through tangible intermediaries such as precious metals,
wealth could now be transferred through a piece of paper.

This worked only because the legal systems backing up that piece of paper
were robust enough to command everybody’s confidence. If the debtor tried to
welsh on his IOU, the banker could haul him before the local magistrate and
make him pay.

Once we had established that a piece of paper could carry value, all sorts of
new abstractions were possible. One, paper currency, made it possible for gov-
ernments to print standardized contracts (bills) that promised to pay the bearer
some fixed amount of coin. Because everybody knew they could trust the gov-
ernment (!), the paper money was every bit as valuable as the metal coinage,
and a lot easier to handle to boot.

Unfortunately, some governments have trouble balancing their budgets, and
whenever a government gets into financial trouble, there is always the option of
printing more money, an option that was exercised so often in the past that peo-
ple lost confidence in paper money. It took a long time before governments
realized that they had to have the discipline to refrain from printing excess
money or they would poison their own economies.

If governments could print money, why couldn’t individuals? I’m not talking
about counterfeiting; I’m talking about personal checks. These might be
thought of as standardized IOUs made more reliable by the inclusion of the
third party, a bank. Of course, a scoundrel could still write a bad check, but
such an act could now be recognized as a crime, whereas enforcement of an
IOU required tedious civil litigation. The check represented an amount of
money held in a bank account, which in turn is an imaginary object containing
imaginary coins.

Then came credit cards. These set up accounts (imaginary containers) that
themselves contain no money; instead, they contain the promise that the user
will pay enough money into the credit card account to keep it solvent. This adds
the abstraction of futurity to the system.

New levels of abstraction don’t replace old levels; they are often layered on
top of the older levels. Look in your pockets. You have some coins (precious

6490 AID Chapter 20  10/18/02  5:01 PM  Page 245



246 Chapter 20

metals representing value) and some dollar bills (pieces of paper representing
coins), a checkbook (pieces of paper representing money deposited in a bank
account), and credit cards (pieces of plastic representing an account that you
promise to pay into).

Time to summarize: as economic systems have grown and matured, we have
developed ever more advanced structures to control them, and the central motif
of financial evolution has been increasing layers of abstraction. Greater size both
requires and enables greater abstraction. Systems grow by adding layers of
abstraction.

Political Abstraction

The same process has been going on with politics. Early political organizations
tended to be direct, straightforward, and simple. But as social organizations
expanded, they required additional complexity. Of course, the laboratory of his-
tory has had many experiments and variations, so the simplistic generalizations
I’m about to make should not be taken too seriously. But the overall trend has
been toward greater abstraction.

The earliest hunter-gatherer groupings needed little structure, so they have
been called egalitarian, but anarchistic would be a better term; at low popula-
tion densities, anarchy and freedom are indistinguishable. It was only with the
adoption of agriculture that societies became large enough to require some arti-
ficial social coordination. This was first achieved through the headman, a power-
ful and respected leader who ruled by direct fiat. Later, as social units grew
larger, the headman was replaced by a king. We democrats may see little differ-
ence, but in fact a major new concept was introduced with kingship: the concept
of legitimacy of rule. A headman achieved his status by asserting it over all chal-
lengers; a king gained his only by adhering to some formula for succession. In
many cultures, the law of succession was simple primogeniture. Whatever for-
mula was used, any person violating the formula would certainly have to fight
off an army of challengers to establish himself. The transition from headman to
king was neither sudden nor smooth. Early kings still faced violent opposition
upon accession to the throne; only much later did the rules of succession
become so well-established that they commanded wide respect.

Constraints on the king’s rule were applied only to succession; once in place
on the throne, a king could pretty much get away with murder—which kings
often did. However, as societies became larger, outrageous behavior in kings was
less tolerated, and the notion that a bad king could be corrected by regicide
took hold. Meanwhile a new level of abstraction was developing. It was at first
merely a reaction to the excesses of kings, an attempt to bring them under some
sort of rein. The Greeks tried direct democracy, but Greek democracy was an
extended aristocracy—not that many people were given the franchise. The
Roman experiment was, in my opinion, closer to the overall evolution of politi-
cal systems. They created a temporary king called a consul and split the office in
half to ensure that no single person could ruin everything. These two new ele-
ments (temporary and split) provided a major leap in abstraction: now the con-

6490 AID Chapter 20  10/18/02  5:01 PM  Page 246



Abstraction 247

cept of rule was separated from the person of the ruler and invested in a new
concept, that of political office. The ruler was not this or that Roman; the ruler
was the pair of consuls, whomever that happened to be this year.

Along with this came another abstraction: civil and criminal law. Kings were
also judges; if you had a dispute with somebody, you took it to the king, made
your complaint, and accepted his judgment. But societies were getting too big;
kings couldn’t spend all day resolving petty arguments over missing sheep.
Hence came the notion of a new office, the magistrate (enforcer of laws), and,
of course, the laws that he operated under. The king made the laws and the
magistrates applied them. It took only a minor adjustment to invest lawmaking
power in the hands of a consul.

Parallel with this came another increment in abstraction: the congress, sen-
ate, or council. This was a body of wise or important men, small enough to
debate issues but large enough to be vaguely representative of the population as
a whole. Initially such groups operated in an advisory role to the king or consul,
but later they were given more and more control over lawmaking. 

Unfortunately, Roman society was not flexible enough to handle all those
new abstractions well; with Julius Caesar, Roman society reverted to the kingly
system, retaining a few of the democratic elements. And because kingship isn’t
as efficient with large populations, the Roman system soon stopped expanding,
coasted for a while on its enormous momentum, and then slowly disintegrated.
Things remained in a funk until the Renaissance, when rising populations again
made direct royal rule too cumbersome. Societies were just too big and compli-
cated to be run by one person. 

The European kings saw the handwriting on the wall and adjusted their
rule, some with more alacrity than others. The English were the least laggardly,
steadily eroding the power of the king until today the monarch is superfluous.
The French monarchy was a little slower to respond and paid for it in 1792; the
Russian monarchy was even slower and paid an even higher price in 1917. 

The big idea that replaced monarchy was constitutionalism—an even higher
level of abstraction. A constitution is a law specifying how laws are to be made.
Everything is defined by the constitution in terms of the office, not the individ-
ual. A constitution, after all, is just like a computer program, only its variables
are political offices and the values they take are individuals. It specifies how the
variables are changed (election or appointment) and how the variables interact
(powers of each office).

Our political systems continue to grow in size and complexity. The next
level of abstraction—federalism—was first tried in the U.S. constitution and is
now being gingerly approached by the European Union. Federalism creates an
aggregation of distinct constitutions organized cooperatively. Each state in the
federation retains internal sovereignty, delegating external affairs to the federal
government. Thus, federalism is the next level of political abstraction after con-
stitutionalism. Federalism’s downward manifestation, devolution, is also being
experimented with in a number of countries. I suspect that federalism will be
the guiding theme of political history in the twenty-first century.

Again, the basic message is clear: as we’ve gotten bigger and better at politics,
we have added higher and higher levels of abstraction to our political systems.

6490 AID Chapter 20  10/18/02  5:01 PM  Page 247



248 Chapter 20

Computational Abstraction

Now let’s talk about the process of computation. Its simplest form is counting. In
the earliest days, counting was as direct a process as could be imagined: you
made one mark for each item you counted. We still use this process today, mak-
ing four hash marks before closing the group of five with a diagonal mark, but
the basic scheme of counting with rows of marks has been with us for a long
time. Archaeologists have found bones a hundred thousand years old with rows
of scratch marks incised on them, obviously some sort of counting mechanism.
What were our ancestors counting? Antelopes? Phases of the moon? IRS returns?

Later our counting systems took on a higher level of abstraction with the
introduction of symbols for larger numbers. Every culture had its own system,
but the Roman numbering system is typical. For small numbers, the simple slash
mark was retained as an I. V stood for five slash marks, X stood for 10, L meant
50, C meant 100, and M meant a thousand. You still counted by making a long
sequence of marks, but at least this system saved some space. The system
worked for counting large numbers of things, as suited the needs of a more
complex civilization, but it was hell to perform arithmetic with.

The next big step in abstraction was the Hindu concept of numerals. There
were three big ideas here: first, the creation of a separate numeral for each of the
10 digits in a decimal counting system; second, the introduction of a numeral for
zero (how do you show zero slashes?); third—and most abstract—the concept of
decimal places: that a number consisted of a set of numerals, each numeral mul-
tiplied by an implicit power of 10. We learned it in second grade, but this was
rocket science for the ancients. And before you dismiss their obvious stupidity, I
challenge you to define the way the system works in purely theoretical terms. You
may know how to use it, but on a theoretical level it is quite abstract.

The Hindu system traveled through the Islamic world and made its way to
Europe, where it was called the Arabic system.

The next level of abstraction used this layer as its foundation. The newfan-
gled Hindu numerals made arithmetic easier. Of course, the Hindu system
required some fairly complicated procedures, but like any complex tool, once
you learned the system, it was faster.

This didn’t happen in a vacuum. The needs of European business drove the
development of arithmetic. Financial transactions were themselves growing
more abstract, and this growing financial abstraction demanded concomitant
computational abstraction to figure out who got how much money.

Next came the substitution of a variable for some imagined number. Again,
finance led the way. In earlier, more primitive days, loan terms were specified by
actual monetary values. My loan contract with you might stipulate that I will give
you 50 ducats, and you will pay me 55 ducats next June. But as the economy
heated up, and transactions became more common, merchants began engaging
in what- if games. What if I borrow enough money to buy the whole shipload?
How much would I make? In these circumstances, people began to think in
more abstract terms about such concepts as principal and interest rate. Some
banker got tired of telling Marcello that his 40-ducat loan would cost 10 ducats a
year, Antonio that his 120-ducat loan would cost 30 ducats, and Francisco that

6490 AID Chapter 20  10/18/02  5:01 PM  Page 248



Abstraction 249

his 240-ducat loan would cost 60 ducats. Instead, he need merely post a sign
that said “Today’s interest rate: 25% per annum.”

Note that this number was more complicated than the earlier numbers: it
presumed some computation. By itself, the number 25% meant nothing at all to
Marcello, but he need merely multiply 25% by his desired 40-ducat loan to
obtain the actual interest: 10 ducats. Marcello started thinking at a higher level
of abstraction.

Once we had jumped to this level of abstraction, algebra was the next level
of abstraction (a Persian mathematician had invented the discipline long before;
Europe didn’t catch up with the idea until there was money to made in it.)
Marcello could think in terms of an equation:

annual interest = interest rate * amount borrowed

Now we were putting variables together in equations; this allowed us to
think in higher and more powerful terms.

From there, mathematics took off in its own direction, introducing even
more abstract concepts such as operators and groups, but I won’t follow that
trail. Suffice it to say that the advance of mathematics has generated increas-
ingly higher levels of abstraction that reach beyond the ken of most people.

Biological Abstraction

Biological systems have also evolved in the direction of increasing abstraction.
What I mean by this is that the more complex organisms devote greater biologi-
cal effort to more abstract traits. The simplest one-celled organisms concentrate
on the basics: getting food and reproducing. As we move up to larger creatures,
we see the addition of locomotion, which in and of itself is not of direct value to
the basic goal of reproduction. But locomotion grants access to a larger food
supply and a wider range of possible mates, so it indirectly supports the two
basic goals of the organism. In the same way, sensory mechanisms provide only
abstract support for nourishment and reproduction. Much the same thing can
be said about immune systems, which have evolved an ever-more abstract
approach to dealing with the ever-more abstract assaults of invaders. Particularly
striking is the success of the AIDS virus, which pulls its trick by moving up one
level of abstraction, attacking the immune system rather than the organism.

But the most spectacular example of biological abstraction is the develop-
ment of the nervous system. In its earliest forms, it was a simple detection and
control system, providing direct connection from stimulus (pain) to response
(retraction of affected body part). Later, nervous systems expanded to provide
additional computational power, giving organisms greater ability to react to
their environments with sensitivity and discrimination. And, of course, the
human brain represents a profoundly abstract piece of biological machinery,
much of which is unallocated at birth. Here’s a big blob of biologically expensive
tissue whose job is not precisely defined by the genes—it learns what it needs
during early years of life. How’s that for abstraction!

6490 AID Chapter 20  10/18/02  5:01 PM  Page 249



250 Chapter 20

Thus, biological systems have grown larger and more complex primarily by
adding new layers of abstraction. Those layers are patent in ontogeny—the devel-
opment of an organism from conception to birth. A fertilized human egg is ini-
tially the same as a paramecium, but as it grows it passes through many stages
vaguely similar to the phylogenetically earlier orders of life. And the most dis-
tinctively human trait of the fetus—the brain—is the last thing to develop.
Indeed, by the standards of other mammals, human babies are born prema-
turely; they require three more years just to complete the basic development of
the brain.

Abstraction and Interactivity Design

At last the time has come to bring home my point. The general lesson from all
these examples is that, as systems grow bigger and more complex, they evolve
more abstract structures to cope with the increasing complexity. This is precisely
what we are doing with computers: moving our endeavors to higher levels of
complexity. Consider how much more complex the common conception of a
document has become since the introduction of word processing. Back in the
70s, I was aware of such factors as tabs, margins, and line spacing, but now I reg-
ularly include such factors as font, font size, style, indentations, justification, tab-
ulation, headers, and footers in my document preparation. Note, too, that all of
these factors are abstractions of the printed page. Moreover, I prepare more
documents these days than ever before. Word processing has advanced simulta-
neously in volume, abstraction, and complexity.

Or take spreadsheets. The first spreadsheet, VisiCalc, was a rudimentary
tool for handling financial calculations, but the current monsters have huge
libraries of statistical and trigonometric functions and are used for purposes
ranging far beyond budgetary calculations. As part of this process, though,
spreadsheets have grown in both complexity and abstraction.

Image manipulation programs (drawing, painting, and photo retouching)
have similarly evolved from obvious and tangible beginnings to astounding levels
of abstraction and complexity. Gradient fills, palette adjustments, and mathe-
matically advanced filtering algorithms have been added to the simple drawing,
rectangular selection, and other schemes of yesteryear. These additions are not
merely more complex: they are more abstract as well, and they are used with
more and bigger images because they’re so useful.

Last, I direct your attention to the growth in abstraction on the web. As
more and more pages popped up, we needed a higher level of abstraction for
handling the web; hence arose the search engine. As more material flooded
onto the web, we started seeing specialized search engines, and now we have
pages that offer lists of search engines—an abstraction of an abstraction. At the
same time, we have seen the languages of the Web increase in abstractive power.
HTML has grown through the addition of more abstract constructs, such as
frames and tables. Java has made possible a gigantic leap in abstraction in our
designs, and the Web will grow even more because of it.

6490 AID Chapter 20  10/18/02  5:01 PM  Page 250



Abstraction 251

Transforming Observation into Design Practice

These observations provide us with a useful way of thinking about the design
process for interactivity. It seems that a great many designers attempt to
improve an existing design by adding greater complexity; all too often this yields
what I call humongous heap design, in which features are simply shoveled onto an
ever-larger pile, until the pile grows so large that even the designers themselves
cannot grasp its operation, at which time design growth peters out from intellec-
tual exhaustion.

A more productive alternative would be to concentrate on the level of
abstraction of the design rather than the amount of complexity. Greater com-
plexity emerges automatically from higher abstraction; therefore, abstraction
should drive the design process, not complexity. For example, if I were to
attempt to design a better word processor, I would not look for new features to
add; I would begin by asking myself, “What is the deeper essence of a docu-
ment?” I would seek some more abstract way of conceiving a document. Perhaps
I would think of it as a communication rather than a document. Perhaps instead
of visualizing words on a page, I might think in terms of organization of ideas—
this would yield a word processor based on an outliner. Or perhaps I would
think not in terms of the final result, but in terms of the interactive process by
which a writer creates a document. What goes on in the writer’s mind does not
look like a printed page; perhaps an abstraction of that process would lead us to
a better word processor. This might entail some specialization in target audi-
ences: a word processor for novelists whose starting points are characterization
and plot. Or perhaps a word processor for bureaucrats whose abstractions are a
set of nothingburger sentences customizable with appropriate obfuscatory pas-
sive verbs, verbified nouns, and acronyms. Indeed, any formulaic style of writing
can be addressed with a specialized word processor that incorporates the central
abstracting formula.

Abstraction and Website Design

Website designers can enhance the utility of their sites by thinking of their work
in more abstract terms. It’s not just a collection of pages grouped into a tree
structure, with some crosslinks added for fast navigation; it’s an information
structure. The basic tree structure is quite practical with small websites of a few
score pages, but imagine how badly it breaks down with a website with 100,000
unique pages. As our websites grow in size and complexity, we need a higher
level of abstraction to stay on top of the problem. Search engines help, but they
abdicate any responsibility for organizing the website more efficiently. We must
learn to think more in terms of information organization than information pres-
entation. This new abstraction will require more intelligence of its users and
more thinking/processing power of its providers; higher levels of abstraction in
other systems have always demanded more of all concerned. Later, we’ll need to
move website design to higher levels of process intensity. This will require the
use of languages permitting higher levels of abstraction than HTML.

6490 AID Chapter 20  10/18/02  5:01 PM  Page 251



252 Chapter 20

Abstraction and Educational Software

I for one have grown bored and frustrated with all those tedious products that
dish out facts like Twinkies off a production line—and the addition of sound-
track, illustrations, and video only adds icing and colored sprinkles to the
Twinkies. Much educational software operates at the lowest level of educational
abstraction: the presentation of fact. Higher levels of abstraction will be neces-
sary to tap the power of the computer in educational applications.

The educational simulation is the first level of abstraction, and much has
been learned about the use of educational simulations. My hunch is that the
next level of abstraction will be variable simulations. We present younger stu-
dents with tiny simulations, each making a small point. Older students
encounter a wider array of ideas presented at a higher level of abstraction. The
youngest student learns about Columbus discovering America; an older student
plays with the spice trade; an even older student experiments with economic
simulations of the period.

Another direction in which to explore abstraction is in the educational
process itself. What goes on in a student’s mind when first encountering, say,
algebra? How are those ideas successfully integrated into the webwork of previ-
ous knowledge? It might be possible to open up new areas of educational soft-
ware by abstracting the process by which the student learns, rather than the
material that we wish to teach.

Abstraction is the key to strategic development of interactive designs.

6490 AID Chapter 20  10/18/02  5:01 PM  Page 252



21
I N D I R E C T I O N

Abstraction is an intellectual concept; indirection is
one means of translating this concept into practice—but

not the only means. Abstraction replaces tangible reali-
ties with grander intangible concepts; indirection is not

quite so esoteric. It replaces tangible realities with tangible substi-
tutes, representations, or pointers. These indirectors are smaller,
handier, or more manipulable than their referents; if they aren’t in
some way more useful, we wouldn’t bother with them. Think of
abstraction as physics and indirection as engineering.

I’ll use financial abstraction as my example; here’s how the abstraction of
the financial system in the previous chapter is manifested through indirection.
The rock-bottom foundation of finance is the “goody”—some product or service
that we desire. Coins, the first level of finance, are not themselves goodies; they
are held to be equal in value to goodies. Thus, I can exchange some of my coins
for some of your goodies. The only reason I bother with coins is because they
are small and light; I can carry them around in my pocket a lot more easily than
I could carry a cow. The next level of abstraction is paper money, which is even
easier to carry around, because one bill of a standard size can be worth $1 or
$1,000, whereas coins would have to be larger for larger denominations, and
we’d be stuck with either pin-sized pennies or pizza-sized $1,000 coins. But

6490 AID Ch. 21  11/4/02  3:07 PM  Page 253



254 Chapter 21

remember that the paper money refers back to coins; indeed, for many years,
paper currency had to be backed up by gold. The U.S. government would store
enough gold in Fort Knox to guarantee that owners of dollars could always cash
them in for gold. The dollars stood for the gold. (Later, we dumped the gold
standard. Dollars are no longer guaranteed to be redeemable for gold—but that’s
a technicality.)

The next level of abstraction is the check, which is even more convenient
because we don’t have to put together a combination of bills and coins to obtain
a particular amount of money; a check is like a customizable-value dollar bill.
Again, however, the check is not the same thing as a dollar bill: it’s a representa-
tion of a dollar bill—not quite as tangible as the dollar bill, but handier to use. It
points to a bank account that has the dollars in it.

The next level of abstraction, the credit card, is realized with an even
greater level of indirection. The credit card is just a pointer to a financial
account that acts as an anticipated repository of money. The credit card points
to the account with its credit card number. The credit card account is a grandly
abstract construct. It has no physical existence; in the deepest bowels of some
monster credit card institution, you will not find a little box of coins with your
name on it.

To summarize: Abstraction is manifested through indirection. Indirection
substitutes a convenient indirector for the real thing. That indirector can repre-
sent the referent, substitute for it, or point to it.

Constructs

The crucial component of any indirection scheme is the construct, a scheme for
getting to the referent from the indirector. The construct for dollar bills used to
be quite simple: I could walk into any bank and demand that they replace my
dollars with gold or silver. Checks have a slightly more difficult construct: the
bearer of my endorsed check can’t go to any bank to convert it to dollars; the
check must be taken to my particular bank. The credit card construct is even
more complicated: the creditor’s computer calls up the credit card company’s
computer and collects the dollars electronically, using special green electrons.

Thus, the construct is the procedure you must follow to get from the indi-
rector to the referent. Constructs are everywhere; they are so fundamental to
our existence that we never notice them. Words are indirectors: the word itself
is just a sound that we associate with something in the real world. When I say
“cat,” you mentally substitute your concept of the animal for the word.

Two factors determine the utility of a construct: the compression factor and
the effort of translation to its referent. I use the term compression metaphorically;
it does not refer to a reduction in size, but rather a reduction in clumsiness.
Thus, a coin has a high compression factor for a cow, but a low compression fac-
tor for a jewel, which is why you find jewels and not cows inside treasure boxes.
The word cat is a short, handy compression of “that little furry animal that
purrs, eats mice, and has two erect ears on the top of its head.” In general, lan-
guage provides high compression factors for the ideas it represents (except in
the hands of bureaucrats and politicians):

6490 AID Ch. 21  11/4/02  3:07 PM  Page 254



Indirection 255

“He can compress the most words into the
smallest ideas of any man I ever met.”

—Abraham Lincoln on another politician 

Suppose I buy $10.56 worth of gasoline. Wouldn’t the $10 bill and some
change be easier to use than the credit card? This brings us to the other utility
factor in constructs: the effort of translation to the referent. The credit card’s
12-digit number goes straight into the computer, and the processing from there
is lightning fast, perfectly accurate, and absolutely, positively reliable (we think).
Not much effort there. But if I hand the attendant a $10 bill and some change,
think about how much effort is involved for both of us: I have to carry around
enough cash to cover my anticipated spending, the gas station attendant might
have to make change, might make a mistake in the process, might try to cheat
either me or the owner, might get robbed, and has to dispose of the cash safely
at intervals. All of these problems impose extra effort. Thus, while a $10 bill
might be itself “more compressed” than a 12-digit number, this is more than
compensated for by the additional effort required to handle the $10 bill. The
real point of constructs is to reduce the total workload, which in turn depends
on how easy the construct is to “carry,” how “far” you have to carry it, and how
much work you have to do to “translate” it back to its referent.

By the way, this takes us back to Chapter 17 and the concept of process versus
data. The data is the compressed item; the process is the translation back to its
referent. As I pointed out there, you can always put together any mixture of
process and data. In some cases, data is easier to work with; in others, process is
easier, so you find a balance that minimizes your total effort. Processing a credit
card purchase takes a lot more computer cycles than making change for a dollar
bill, but computer cycles are faster and cheaper than human brain cycles.

Carrying Indirectors across Gaps

A construct “carries” an indirector across some “distance” to a destination,
where the referent is somehow reconstructed. In the case of interactivity design,
there are six gaps to bridge in the interactivity loop:

6490 AID Ch. 21  11/4/02  3:07 PM  Page 255



256 Chapter 21

In moving information around this loop, the information must be converted
at each step into some different form and transmitted across a gap. Let’s take
the simplest example: the path from keyboard and mouse to the computer.
We’ll concentrate all of our attention on the keyboard. The keyboard has a wire
that goes into the computer. By the way, you may not have known that most key-
boards have a pretty complicated chip inside that could fairly be considered a
computer in its own right. Now, from the keyboard’s point of view, a keypress is
a connection between two wires in a matrix. When you press the Q key, the key-
board doesn’t sense Q; it senses a connection between, say, vertical wire 4 and
horizontal wire 2. As far as the keyboard is concerned, that’s the reality of the
event. However, that’s not what the keyboard sends down the wire to the main
computer; its computer chip looks up a kind of Morse code for that combina-
tion and sends that code down the wire. Your one keypress triggers a bunch of
electronic pulses traveling down the wire to the CPU.

That might sound like a complicated process, but there’s a good reason for
it: that wire that runs from the keyboard to the computer is out there in the
world, exposed to slings and arrows, chewing puppies, yanking users, EM-
radiating transformers, and all the other dangers that the wires inside the com-
puter are protected from. It’s easy for the signal to get messed up by all that
noise. Remember, the construct is supposed to carry the stuff across the
distance—this presumes that the stuff actually gets there! To guarantee noise-
free delivery of the signal, the keyboard codes it up in a Morse-code-type con-
struct that is almost impossible to screw up. It sends the Morse-code down the
wire to a circuit inside the computer, which reconstitutes it as the computer
code for Q and presents it to the computer for processing.

Thus, your own indirector for Q is a key on the keyboard; pressing that key
causes the keyboard to convert that indirector into another indirector that is
well-suited to moving down the wire to the computer. When that indirector
arrives at the computer, it is converted into another indirector, the computer
code for Q.

Consider how complicated all this is, yet the connection between keyboard
and computer is the cleanest, simplest, most reliable connection in the entire
loop. I hope this instills in you a respect for the difficulties you will face in
designing constructs to cross the other, more difficult gaps.

So let’s trace each step in the process and discuss some of the constructs
available. At each step, we’ll be dealing with a pair of entities, each possessed of
its own special strengths and weaknesses in receiving and transmitting informa-
tion. We’ll need a construct for each pair, one that takes advantage of each
part’s strengths while skirting each part’s weaknesses.

Step 1: CPU to Monitor

I have good news for you: the CPU-to-monitor step is well understood and well
supported at every level. At the hardware level, all computers have display
boards that reduce the amount of computer effort required to keep a video dis-
play running. At the operating system level, every computer has a great many
built- in programs meant to simplify the task of moving information from the
computer to the display. As a programmer, I need merely order the computer to

6490 AID Ch. 21  11/4/02  3:07 PM  Page 256



Indirection 257

draw something (a line, some text, or an image), and the operating system does
all the work. Finally, at the highest level (programming), we are blessed with a
huge force of eager programmers who just love to create snazzy graphics on
computers. Thus, you should have no problem dealing with this step.

Step 2: Monitor to Eyeball

Our accumulated wisdom about the monitor-to-eyeball gap is maintained by the
community of graphics artists. I will not presume to offer a lesson in that field;
let me merely note that there are a great many powerful constructs for commu-
nicating information to the eye. The retina is capable of deciphering color, tex-
ture, motion, and edges. That’s one reason why text characters are always
composed of lines, curved or straight: the retina quickly recognizes the edges to
decipher the character.

Step 3: Eyeball to Brain

The eyeball-to-brain may sound like a superfluous step already covered by the
graphic designers, but the problems they are best at solving aren’t quite the
same as the problems we face as interactivity designers. They have much useful
advice to offer us, but I think it graces us to consider the problem from another
point of view as well.

Fortunately, the brain is able to bring vast amounts of mental resource to
bear on the interpretation of constructs. This permits a great many highly com-
pressed constructs to be used. Perhaps the most impressive of these constructs is
written language: in reading we take in a tiny amount of information and trans-
late it into some pretty complicated and abstract ideas. My favorite example is the
(only distantly correct) statement, “Ontogeny recapitulates phylogeny.” (This is
the notion mentioned earlier, that an organism developing from conception to
birth retraces its evolutionary past.) With just 33 bytes of data, we can communi-
cate an idea so complicated that entire books have been written on the subject.

Another powerful brain capability here is the facial recognition processor. Our
brains have special circuitry for analyzing human facial expression. This is not
merely a culturally learned capability; much research has demonstrated that infants
can recognize and differentiate faces and facial expressions. Anthropologists have
shown that the basic facial expressions are universal and independent of cultural
differences. Both of these observations point to a wired-in capability. Even more
interesting is the research into micro-expressions. These are quick expressions that
flash across the face in a fraction of a second. They happen so fast that neither the
expressioner nor the audience is consciously aware of their existence, yet careful
experiments have demonstrated that the audience definitely, if subconsciously, per-
ceives and recognizes the micro-expression. For example, when a person lies to
you, he has difficulty maintaining eye contact; his eyes will flash away briefly. We all
know this and thus arises the demand, “Look me in the eye when you say that!”

Consider what this implies about the processing capabilities of the human
brain in handling facial expressions. There’s a great deal of processing involved
in feature recognition: transforming the texture and shading information into
cheeks, eyebrows, lips, and so forth. Next, that feature information must be

6490 AID Ch. 21  11/4/02  3:07 PM  Page 257



258 Chapter 21

translated into emotional expression (this expression is angry, that expression is
happy). Yet, all this processing is carried out in a fraction of a second. Clearly, a
great many neurons are dedicated to this processing.

The movies take advantage of our natural brainpower in processing human
facial expression. The sequence that best exemplifies this for me is from the very
first Star Wars movie. Luke Skywalker et al. have escaped from the Death Star in
the Millennium Falcon and are making their getaway, pursued by enemy fighters.
There follows an intense action-packed sequence in which Luke and Han Solo
shoot down the enemy fighters. What is most striking about this action sequence
is its reliance on faces to communicate action and emotion. You would expect
such a sequence to be all zooming spaceships, roaring turbolasers, and billowing
explosions, but in fact such imagery occupies only half of the display time of the
sequence. The other half is taken up by character faces: frightened, concentrat-
ing, worried, triumphant. George Lucas knew that special effects get you only
halfway there. You need facial expression to cinch the communication.

Facial expression is not the communicated reality, but rather an indirect
representation of the communicated reality. The important idea being commu-
nicated by facial expression is emotion, but the facial expression is not the same
thing as the emotion; it is a representation of the emotion. In other words,
facial expression doesn’t depict emotion—it represents emotion. It is an indirect
indicator of emotion, but the indirection of the expression is compensated for
by the speed with which the brain can translate that indirect representation into
an interpretation of emotion. Thus, although a tremendous amount of process-
ing is involved in deciphering the construct, this processing is already hard-
wired into the brain, so it costs very little in terms of effort.

Step 4: Brain to Hands

Whatever the brain decides, it must express to the computer through the hands.
The construct used here is simple: one nerve extends from the brain to each
muscle; the brain sends a signal down that nerve, and the muscle contracts. The
complicated part, figuring out the timing and sequencing of all those muscle
contractions, is carried out inside the brain, so the information travelling to the
muscles requires little compression in a construct; it just needs to get there fast.

Step 5: Hands to Keyboard and Mouse

Here we have the most tangible of the six steps. The hands communicate infor-
mation by pressing buttons and moving a mouse. Unfortunately, pressing a but-
ton sends exactly one bit of information—not much to work with. If we have a
hundred keys on a keyboard, then we can send 7 bits with one button press, and
prefix keys such as Shift, Alt, Control, and Command add another 4 bits—still
not much data. Hence, all those button presses have to be assembled in long,
complicated sequences to communicate anything. We type lots of words per
minute, and we click, drag, and double-click madly and give ourselves repetitive
stress injuries. The construct used here is whatever you, the designer, can cook
up to reduce the number of keystrokes and mouse clicks for the user. This is
why interactivity design is important.

6490 AID Ch. 21  11/4/02  3:07 PM  Page 258



Indirection 259

Step 6: Keyboard and Mouse to CPU

This last step lies outside our reach as designers; the wiring from keyboard and
mouse to CPU is fixed. On the sixth step, the Designer rested.

An Example of Constructs at Work

To see constructs at work, let’s use the brilliant example Scott McCloud used in
his wonderful book, Understanding Comics. Here is my own rendition of Scott’s
much better artwork:

We start with a photograph of a face on the left. This is reality, plain and
messy. To its left is an abstract face. Next comes the even more indirect repre-
sentation: the word FACE. Last comes a verbal description of a face.

Consider now the constructs required to interpret the various representa-
tions of a face. The leftmost representation, of course, requires no construct
because it is not a representation—it is a direct depiction. There is no abstrac-
tion, no indirection; therefore, no construct is required. As we move to the left,
we encounter increasing abstraction and must apply increasingly abstract mental
constructs. We must interpret the word face to understand the first textual repre-
sentation. The second representation requires us to interpret the words and
assemble them geometrically to envision a face. 

Indirection in Programming

Computer programming uses indirection in an especially simple and clear man-
ner. Allow me to walk you through some of the lessons that programmers have
learned about indirection. Let’s start by talking about numbers. You can refer to
numbers in a program in many ways. The simplest and most straightforward is
to explicitly provide the number. For example, suppose we wish to determine
whether if a value has grown too large. So we have an IF -statement, like so:

IF MyVariable > 25 THEN... 

But programmers know that this way of expressing a value is often undesir-
able. Suppose that I have three or four places in my program where I repeat the

6490 AID Ch. 21  11/4/02  3:07 PM  Page 259



260 Chapter 21

same test on MyVariable. This is trouble waiting to happen, because the odds
are high that if I later need to change the 25 to, say, 26, then I have to hunt
down every case of IF MyVariable > 25 THEN... All I need is to miss just one
case, and I’ve got myself a messy, ugly bug.

Of course, every beginning programmer knows the solution to this prob-
lem: at the beginning of the program, you define a constant called, say,
TestConstant, and you set it equal to 25. Then your code should read:

TestConstant = 25

(many lines of intervening code)

IF MyVariable > TestConstant THEN...

The big advantage of this approach is that, if I choose to change
TestConstant from 25 to, say, 26, then I change it at a single place in the pro-
gram. This greatly cuts down on stupid bugs. Of course, I also have to write one
extra line of code.

This is all pedestrian programming, but there’s an enormously important
point here: the solution involves recourse to a higher level of indirection in the
representation of the number. The old, dumb way used the direct value, but the
solution used a representation of the value (TestConstant) instead of the value
itself. In other words, the line

IF MyVariable > TestConstant THEN...

tells the computer to go back and look at whatever value was assigned to
TestConstant. It doesn’t present the value itself, it instead represents the num-
ber with a name.

But this is only the first level of indirection. The clever programmer might
wish to change the value of TestConstant during execution. At first, its value is
25, but later on, she wants it to be 26. To do this, she turns TestConstant into a
variable with the name TestVariable. This is a more powerful approach; you can
do all sorts of snazzy tricks with it. You can einsure that the IF -statement is will
triggered under different conditions. If you want TestVariable to be 25 in one
situation but 26 in another situation, you just change its value at the right time.
But there’s a bit more work involved in making the variable work. You have to
declare the variable, specifying what kind of variable it is. Then you have to ini-
tialize it. Thus, there are now two extra lines of code to write:

Short TestVariable;

(many lines of intervening code)

TestVariable = 25;

(many lines of intervening code)

IF MyVariable > TestVariable THEN...

Moreover, the program is now a bit harder to understand. When you were
using a constant, you could always check its value by simply looking up its defi-
nition in the program listing. But a variable is much trickier to check up on.

6490 AID Ch. 21  11/4/02  3:07 PM  Page 260



Indirection 261

You have to halt the program in mid-flight and examine its value with a debug-
ger. Granted, this is easy work, but it’s still more work than simply looking up
the constant declaration.

Note the drift: in moving from constant to variable, we increased our pro-
gramming power and gave ourselves interesting new capabilities. But at the
same time, we added one more line of code for each level of indirection, made
the program harder to understand, and increased our workload.

But it doesn’t stop there. We can take our problem another level of indirec-
tion higher by replacing the variable with an table of variables referred to by a
pointer. This pointer an index into the table of variables. Now, why would we
want to do this, you might wonder. The advantage is that the pointer or the
index can be easily and simply altered to point to completely different values.
Thus, an index of 1 might point to a value of 25, while an index of 2 might
point to a value of 57, and an index of 3 might point to a value of 19. The big
difference here is that now we are contemplating changing the value of
TestVariable, doing so frequently, and using a large variety of numbers that
bounce all over the map. We are now thinking in broader terms about
TestVariable. It could be almost anything, and it will be many different things at
different times. And this approach will require quite a few extra lines of code to
initialize all the values in the table.

Searching and sorting huge amounts of data can be made much faster by
using pointers. Entire books have been written on this technique. My point is
that the central idea behind these powerful methods is the use of the indirec-
tion of a pointer. Indeed, some of the most powerful methods involve double
indirection: that is, pointers to pointers (or handles, as they are called). Such
methods can be truly mind-boggling, requiring a great mental exertion to deci-
pher. Once you figure them out, though, they are truly powerful and elegant.

Indirection also costs computer time. When you use a constant, the com-
puter goes straight into the object code and runs fast. When you use a variable,
the computer has to load the value from RAM, a slower process. When you use
a pointer, the computer must first fetch the pointer and then dereference it to
obtain the value, an even slower process. And when you use a handle with dou-
ble indirection, the computer must go through two dereferencing processes
before it can finally fetch the desired value. Obviously, indirection slows down
the computer in much the same way that it boggles the mind.

Note this also: our mental image of TestVariable has shifted. When we were
low on the scale of indirection, it was easy to think about what TestValue repre-
sented: it was a single number, 25. Now a single value like 25 is something you
can wrap your fingers around, something clear and almost tangible. But as we
have moved up the scale of indirection, our mental image of the value has grown
fuzzier. First it was a number, 25. Then it was a name (TestConstant) representing
a number, 25. Then it was another name, TestVariable, representing a variable
whose value was initially 25, but might change later. Later, it became a pointer or
an index to a value in a list of values. Are you starting to become befuddled? Is
all this indirection making you think too hard to keep up with what is intended?
If so, then you are experiencing the other half of the representation/depiction
tradeoff. As I have already shown, higher levels of indirection permit more power
and expressive range, but they also require greater amounts of interpretive labor,

6490 AID Ch. 21  11/4/02  3:07 PM  Page 261



262 Chapter 21

and they presume larger programs. You don’t need double indirection for a
checkbook balancing program; you do for a big spreadsheet.

Here’s another example: Imagine that you’ve got a huge website with sev-
eral hundred pages up and running, and you have your standard high-level navi-
gational links placed on each page. But now the client wants you to add another
high-level navigational link. Under older versions of HTML, you had to labori-
ously go through each of the pages, inserting the new HTML code that includes
the additional link. What a tedious job! Under later versions of HTML, though,
you can design each page with a frame, which is defined just once. You change
the frame, and all the web pages containing the frame are automatically
updated. Aren’t frames wonderful? Note, however, that each one of those pages
with the frame actually contains an indirector—a pointer—to the frame. Frames
are nothing more than a new form of indirection introduced into HTML. 

Applying Indirection to Output

So far, I have spoken about indirection solely in terms of communication. It is also
possible to use indirection in another manner entirely: to calculate output directly.
There are three broad classes of output indirection: zero indirection (that is,
utterly direct), combinatorial or indexed indirection, and calculated indirection.

The utterly direct approach is the most commonly used method these days,
largely because it is the easiest to understand and produce. You simply prepare
whatever it is you wish to present to the user, store it somewhere, and then
dump it onto the user at the appropriate moment. I’ll offer you two examples of
this process: one using a human face, and the other using some text.

Here’s an example of utterly direct text:
“Hector had a long, sharp, heavy sword hanging at his side. Drawing it, he

swooped like a high-flying eagle that drops to earth through the black clouds
upon a tender lamb or a fleeing hare. Thus he charged at Achilles.”

And here is an example of an utterly direct face:

The second type of indirection, indexed or combinatorial, is most easily
understood with a headline generation algorithm for the National Enquirer
involving random combinations of Princess Diana, reincarnation, abduction by
flying saucers, abnormal births, and revolutionary diet plans (“Two-headed baby

6490 AID Ch. 21  11/4/02  3:07 PM  Page 262



Indirection 263

abducted by space aliens; returns with secret message of peace from Princess
Diana”). We could, for example, prepare a suitable headline with the following
simple algorithm:

You randomly select one of the three items in each bunch and then string
them together to get your combinatorial headline.

But you can take this idea much further. Here is an example of what I call
Tinkertoy Text from my program, the Erasmatron:

<SubjectNom> {appears|looks} {quite|very|most} {distraught|upset}.
“The {barbarians|Saxons}!” <SubjectNom> blurts. “They’ve {stolen|robbed me
of|made off with} <NumberObject1Value> of my cattle!”

This little jewel can turn out hundreds of variations on the basic sentence,
such as:

Percival looks most upset. “The barbarians!” he blurts. “They’ve made off
with 87 of my cattle!”

or
Isolde appears quite distraught. “The Saxons!” she blurts. “They’ve stolen

45 of my cattle!”
or many other combinations.
Combinatorialism can also be used graphically; here is an example:

What makes the combinatorial approach so useful is that you can use a
great many basic components in many different combinations:

+ + + =

two-headed baby
space alien

Ghost of Elvis

found in dumpster
appears in bathroom mirror

terrorizes town

leaves
promises
advertises

revolutionary new diet plan
secret message of world peace

predictions for 2001

6490 AID Ch. 21  11/4/02  3:07 PM  Page 263



264 Chapter 21

As you might imagine, with this approach you could easily generate zillions
of faces.

The third type of indirection is the most powerful: calculated indirection. This
method uses equations to figure out how to generate the output. My Tinkertoy
Text scheme has a whiff of calculation in it; the term <NumberObject1Value> is
replaced by a numerical value. It can figure out the name of a character and insert
that where required; it can even substitute pronouns for proper names. However,
it can’t calculate tense endings, plurals, case endings, or most other aspects of nat-
ural language; such calculations are too difficult.

My face display system uses some calculations. The lips, for example, are cal-
culated with consideration for mouth width and lip thickness. However, a much
better approach is the use of fully synthetic facial displays, which calculate a face
from basic knowledge of human facial anatomy. These are now in use in
Hollywood and will soon become available at the less stratospheric levels at
which we now work.

Communicative Power of Indirection

Directness is powerful. If you and I are having a heated disagreement, and I
were to bare my teeth and snarl, the directness of my expression would have
greater impact upon you than if I passed you a note saying, “I am angry.”
Indirect expression is never as immediate or punchy as direct expression,
because indirect expression must travel through several layers of computation
inside the brain before it makes its point. This is why movies are generally more
popular than novels, and television is more popular than radio.

But directness is a two-edged sword; it has advantages and disadvantages.
Most designers are acutely aware of the advantages of directness, but ignorant
of its disadvantages or of the corresponding advantages of indirectness.

Consider this example of the detrimental effects of over-specified depiction:
Suppose that you wish to communicate a simple idea about home safety—that
you shouldn’t leave electrical wires lying about on the floor. Now, you could
communicate this with representational text like so: “It is unsafe to place electri-
cal cords across walkways; people might trip on them.” That’s pretty good. But

6490 AID Ch. 21  11/4/02  3:07 PM  Page 264



Indirection 265

golly gee, wouldn’t it be more impressive to make a video depicting the prob-
lem? Here’s old grandpa shuffling down the dimly lit hallway. His eyes aren’t so
good. The camera at floor level shows his foot catching on the electrical cord.
Next, a slow-motion shot of his face as he loses his balance, and then a full shot
of his body crashing into the floor. Then we follow up with normal-speed
sounds of voices crying out, “It’s grandpa! He’s hurt! Call an ambulance!”

This is certainly dramatic video. But consider its message. Does it say that
electrical cords are dangerous to everybody, or only to old people? Perhaps a
viewer might tell himself, “Since there are no old people in my home, I don’t
need to worry about this problem.” Or perhaps the viewer will draw the conclu-
sion that the problem lay in the poor lighting in the hallway. The video doesn’t
address your situation or my situation; it addresses a single case. We are
expected to generalize from that single case to a variety of cases, but that
process of generalization is fraught with confusion. It is entirely too easy to gen-
eralize incorrectly. Is the tale of grandpa’s fall a warning about the frailty of old
people, or the dangers of poor lighting, or the hazards of electrical cords left in
the open? The video leaves these questions unanswered.

Note that the indirect textual representation has no such problems. It
clearly specifies the scope and nature of the point being made. It is a more pre-
cise communication; it has clearer focus; it gets its point across more accurately
than the video does.

There’s another advantage to indirectness: it is not only more precise;, it
also offers more expressive possibilities. Consider the lines from this Bob Dylan
song: “And take me disappearing through the smoke rings of my mind, down
the foggy ruins of time, far past the frozen leaves, the haunted, frightened trees,
far past the twisted reach of crazy sorrow.” Consider the expressive richness of
these words. Their power springs from their indirectness, from the power of the
combinations that the words permit. Consider, too, the futility of trying to com-
municate these phrases with direct depiction. Just what would “the foggy ruins
of time” look like? I suppose that you could come up with an image that does
the job, but could any actual depiction have the suggestive majesty of the repre-
sentational phrase? And then there’s “the smoke rings of my mind”—even fur-
ther beyond the reach of direct depiction. The indirectness of representation
makes possible an expressive range that completely outstrips direct depiction.
What indirectness lacks in immediacy, it can gain in reach.

Here’s an objection: User interfaces have evolved from indirect, representa-
tional schemes such as DOS to more direct, depictional schemes such as GUIs.
Does this evolution not suggest that more power is obtained through direct
approaches? This argument would have merit if DOS had actually made use of
all that indirection. Remember that out of the zillions of things you could say in
DOS, only a few actually accomplished anything. All the advantages of indirec-
tion were thrown away. Thus, there was no trade-off in moving from DOS to
GUIs, and so the GUI advantage in limiting conceivable states was the dominant
consideration. If the old command-line interfaces really had used all of the pos-
sibilities of textual input (that is, if they could understand and respond to a
command such as “load my last word processing document”), then GUIs would
never have stood a chance.

6490 AID Ch. 21  11/4/02  3:07 PM  Page 265



266 Chapter 21

Putting Indirection to Work

Your task as interactivity designer is to concoct useful forms of indirection for
your customers. What abstraction can you perceive that covers a great many
tedious tasks, and what kind of user-manipulable indirector would make this
abstraction available? A good place to start is to search for some task that has
grown in size so that the old, more direct means of implementation are becom-
ing tedious. Consider fonts in a word processor, for example. In the good old
days, we had maybe a dozen fonts, and they were all available on a single menu.
But nowadays, there are thousands of fonts to choose from. It would be nice to
have them all available, but I don’t like cluttering up my Fonts menu, so I leave
many out. Here’s a perfect place for a higher level of indirection. An obvious
means of addressing my goal would be to characterize fonts by their most com-
mon function: body text, title text, and decorative text, for example. This would
permit us to have three shorter font menus instead of one big one, but that’s
not what I’m driving at. Let’s imagine a day in the not-too-distant future when
our user is perpetually online and has fast access to thousands of fonts. It would
then behoove us to organize our fonts by their characteristics: body text, header
text, decorative text; wide or narrow characters, rounded or angular characters,
and so forth. The indirectors are the described characteristics; each indirector
points to a group of fonts. Users get easier access to tons of fonts.

Thus, using indirection is a matter of finding the ideal abstraction and set
of indirectors for the task. Most people find the abstraction task more difficult
to handle than the task of creating indirectors; they should pursue the design
problem by sniffing about to find a good indirector. The more cerebral design-
ers should try their hands at designing a good abstraction, from which an indi-
rector can be deduced. But there’s no hard rule here—some problems are most
quickly solved by the more theoretical approach, and some are most quickly
solved by the direct approach. 

Scripting Languages

Many products extend their functionality by means of custom programming lan-
guages. An example is the query language on many websites that you use to
specify what you’re searching for. Such languages go by different names:; some
designers call them scripting languages; others call theirs macro languages. Such
languages are seldom learned by most users; they’re just too much trouble for
everybody but the hardcore enthusiasts. 

My own cross is grep, a little language used in advanced text editors to spec-
ify all kinds of text patterns. For example, with grep, I can tell the text editor to
search for all occurrences of any text string with the characters CASE# followed
by two digits, and when it finds such a text string, to insert a zero in front of the
first digit. This will sweep through all my text, replacing CASE#27 with

6490 AID Ch. 21  11/4/02  3:07 PM  Page 266



Indirection 267

CASE#027, and so forth for any combination of numerals. And that’s not all;
with grep, I can tackle much more complicated situations. The problem is, grep
is hard to learn. To this day, I still keep a three-page summary of grep program-
ming rules next to my computer, and I consult it whenever I need to use grep. 

These scripting languages commonly suffer from three design errors, all
arising from a programmer-centric view of reality. First, their design goals are
poorly thought out; their underlying motivation appears to be “let’s add a small
programming language to it!” Since programmers live and breathe program-
ming languages, most have their own ideas about what makes a good language
and can’t resist the urge to design one. There’s only one good reason to add a
scripting language to a product: to improve the expressiveness available to the
user by adding a capacity for indirection. 

The second design error is making this capacity too large. Indirection is
confusing; it must be administered in small doses. Programmers, though, are
hardened addicts with such high tolerance for indirection that they can’t help
themselves—their designs are invariably too abstract for normal people.
Programmers want power; they bitterly resent any constraint on their power.
This was one of their objections to the Macintosh; it wouldn’t let the user into
its innards to perform unnatural acts. But DOS systems permitted any outrage—
which in programmer eyes was a desirable trait.

Third, these scripting languages are expressed in unnecessarily program-
merly terms. For example, the term loop is inappropriate for civilian use.
Normal people don’t think of such operations in sequential terms; they say, “Do
this for each of these” to describe a repetitive operation. Or they give a single
instance and then say, “Do the same thing for all the others.” Yet all loop con-
structs in scripting languages require their users to specify the range over which
the loop is to operate. The notion that a dataset could be defined as a closed set
that is operated upon as a group seems alien to programmers. Another pro-
grammer arcanity: the use of a loop index as the primary component of the
loop. Normal people don’t think in terms of loop indices; they think in terms of
corresponding actions for corresponding parts. Designers would do well to dis-
pense entirely with loop indices and think in terms of sets of manipulable
objects, with correspondence established in some simple fashion. 

Let’s use grep as an example. Its power and flexibility are impressive, but a
dumber version would be more accessible to real human beings. Here’s an
example of a search facility containing the most important features of grep with-
out all the arcanity:

6490 AID Ch. 21  11/4/02  3:07 PM  Page 267



268 Chapter 21

In this example, the notion of looping is intrinsic to the “Change All” but-
ton, but there’s nothing complicated about it.

There’s a simple two-step formula for making looping implicit: include a
means for the user to define a set, and add commands ending with -est, such as
best, biggest, heaviest, and so forth. All of these words imply a looping search
through a dataset. You could also use several other terms implying looping:
average, standard deviation, total. There is also, of course, the ability to apply a
verb to all members of the set. 

Some scripting languages include a “watch me” facility for writing the
script. The user doesn’t have to learn the scripting language itself; instead, she
tells the software to “watch me while I perform this task.” The program records
the sequence of commands and turns it into a macro. The difficulty with these
schemes is how to loopify them. Selecting the set of manipulable objects on
which the macro will execute is fairly easy: all of the files selected in a dialog
box, all of the image frames in the selected portion of the movie, all of the
records in the selected dataset. The trickier part is specifying the roles of each
component in the macro. For example, suppose that I want to copy a small rec-
tangle from the lower right corner of each frame of my movie and paste it into
the center of the preceeding frame. How can I tell the computer that the frame
parts of the macro are variable, but the rectangle selection and copying and
pasting operations are fixed? There are two solutions to this problem.

The first and simplest is to have the user execute the desired procedure
three times. On the first execution, the computer simply records the procedure.
On the second execution, the computer notes the differences between the first
and second executions, generalizing those differences to apply to the entire set.
On the third execution, the computer compares its expectations with the user’s
entry to confirm that it understands the procedure; a discrepancy here triggers
a request for additional examples. In our movie example, the computer would
see that the rectangle selection, copying, and pasting operations are constant,
but that the two chosen frames bear a constant relationship to each other: the

6490 AID Ch. 21  11/4/02  3:07 PM  Page 268



Indirection 269

recipient always preceedes the donor. This method is great for simple tasks but
becomes overly tedious with more complex tasks. 

A second method is to break down the parallelism of the interface and rely
instead on a strictly sequential interface. In the preceding example, we would
constrain the program to display only a single frame at a time. That way, the
user must explicitly include the “go to preceeding frame” command in his pro-
cedure. The drawback of this system is that it forces the human to operate more
like a computer, with a narrow focus of effort and lots of small, tedious steps.

Indirection is the means of implementing abstraction. Constructs are formulas used to
translate indirectors back to their referents.

6490 AID Ch. 21  11/4/02  3:07 PM  Page 269



6490 AID Ch. 21  11/4/02  3:07 PM  Page 270



22
L I N G U I S T I C S

To listen well, the interactivity designer must create a
language of interaction between the computer mind

and the human mind. Since you’ll be getting into the lan-
guage-design business, it might help to know a little about

linguistics. Natural language won’t save your neck. Two possibilities
are considered here: inverse parsers and creoles.

My fundamental definition of interactivity declares that each of the actors
“speaks” to the other. In normal conversation, the medium is natural language,
which can’t yet be used in computer-based interactivity. It is time to consider
this matter of language in more detail.

Most discussions of user interface are bottom-up discussions of the lan-
guage of human-computer interaction. They explain the various buttons, icons,
and other doodads, laying out rules for when and how to apply them. They
remind me of the old-style grammar books, laying down strict rules about what
is proper user interface, without considering the dynamic nature of language.
The user interfaces we will use in 10 years today will be much different than
those we use today. Perhaps the user interface grammarians can benefit from
this process, issuing new, up-to-date editions of the iron rules even as those
rules plastically mutate. I will here attempt to take a top-down approach,
describing the underlying principles of language design as they apply to the
interaction between user and computer. Because these fundamental rules will

6490 AID Chapter 22  10/21/02  1:10 PM  Page 271



272 Chapter 22

still apply many years from now, there will be no need for you to purchase a sec-
ond edition of this book. There go all those extra royalties for me. Ah well.

Although I have often spoken of “the language of interaction” as if it were
unique to each application, there exists a larger language of interaction that is
common to the entire computing community. It is the set of conventional
devices—buttons, check boxes, scrollbars, and the like—that are common to all
programs. Thus, there are two languages of interaction to consider: the local
dialect that you design for your application, and the general language that we as
a community use. This chapter will consider both languages, but the emphasis
will be on the community language.

Why Not Use Natural Language?

Before I begin, let me lay to rest an obvious objection: why not use natural lan-
guage? Sad to say, natural language comprehension lies beyond our grasp, nor is
a complete solution likely in the immediate future. This is because so much lan-
guage comprehension relies on a knowledge of the world in which we live.
Computer science researchers like to offer “Time flies like an arrow” as an
example. Normal people understand it instantly, yet the computer cannot
because it can read it three different ways. The word “time” can be a verb, an
adjective, or a noun. As a verb, the sentence becomes a command to measure
flies as if they were arrows. As an adjective, the sentence becomes a declaration
that a particular subclass of flies—time flies—prefer an arrow, presumably to eat.
As a noun, the sentence suggests that the dimension of time moves quickly and
linearly. Of course, most people have no problem disambiguating this sentence,
for we all know that there’s no such fly as a time fly, and nobody in his right
mind would ever want to measure fly times in the manner of an arrow. But this
disambiguation is dependent upon a detailed knowledge of the world. If you
don’t know about the many types of flies (houseflies, tsetse flies, botflies, horse-
flies), and you don’t know about the process of timing and how an arrow might
or might not be used in such a process, then you can’t understand the sentence.
And so far, we have not equipped any computer with that much knowledge of
the world.

In claiming that the computer will not soon understand natural language, I
prefer to use sentences that require detailed knowledge of the intricacies of
human behavior: “The guy who was looking at my wife the wrong way just
laughed when I called him on it, because he’s built like Sylvester Stallone; but
then my brother showed up, and my brother is built like Arnold
Schwarzenegger.” Anybody can understand that sentence immediately, but not so
the computer. To make sense of this sentence, the computer would have to
understand the details of human sexual relationships (bachelors to women, hus-
bands to wives, husbands to bachelors, brothers to brothers) as well as the charac-
teristics of two Hollywood actors and likely male behaviors during sexual conflict.
And how is the computer to understand the frequent use of metaphor in lan-
guage: “When he saw my brother, he took off with his tail between his legs.” 

6490 AID Chapter 22  10/21/02  1:10 PM  Page 272



Linguistics 273

Could we not at least use some reasonable subset of natural language?
Tempting as this solution might seem, it is riddled with problems, the most
important of which is blindness paralysis. Any reasonable subset of natural lan-
guage will exclude some other reasonable subset of natural language. Although
you as designer can easily convince yourself that the dividing line between the
two sets is obvious and natural, your user will never see it this way. This puts you
in direct violation of the rule that you should maximize the ratio of accessible
states to conceivable states. Your user will always conceive natural language
expressions that you cannot handle.

It gets worse. You won’t be using natural language in isolation: everybody
else will be using it, too. Of course, another designer’s implementation will
likely include a rather different “reasonable subset of natural language.” What’s
the poor user to think when Program A recognizes a reasonable natural lan-
guage expression while Program B does not? A user working with a dozen dif-
ferent programs will need to master a dozen different dialects of her natural
language.

But wait—it gets even worse! This dialectation extends temporally as well.
With each passing year, each new version of each application will improve its rea-
sonable subset of natural language, meaning that the dialects are never stable.

This problem cannot be dismissed with the observation that users must
already learn multiple user interfaces that regularly change. In the first place,
user interfaces today are primarily visual, with a laudable closure that clearly
communicates what cannot be done as well as what can be done—most of the
time. A natural language interface does not declare its limitations so obviously.
In the second place, current user interfaces don’t conflict with an already well-
developed and heavily used human standard.

History of Language Design

Your task as an interactivity designer is to create a language of interaction ide-
ally suited for your task. Fortunately, you have a long history of earlier attempts
at language design from which to draw inspiration; unfortunately, few designers
seem to be aware of this history. Ergo I present:

A Short History of Language Design

Our times burst with so much communication that we have lost the polish and
refinement that our media-deprived forebears prized. Not having the technol-
ogy to worry about RAM, backups, closeups, or sidebars, they devoted their
energies to linguistic technology such as synecdoche, metonymy, and catachresis.
The first formal artificial language was musical notation, originally a simple
scheme for denoting nothing more than basic note sequences. With the develop-
ment of better musical instruments and a demand for more music in the
Renaissance, the notational system grew more expressive through a series of
incremental innovations. 

6490 AID Chapter 22  10/21/02  1:10 PM  Page 273



274 Chapter 22

At about the same time, Italian businessmen were learning that their
increasingly complex business transactions required better notation for keeping
track of things and calculating payments; they adopted the combination of
Arabic numerals and the arithmetic procedures these numerals facilitated. Your
calculator and spreadsheet have probably blinded you to the revolutionary sig-
nificance of this little innovation:

57

x38

456

171

2166

but this little combination of geometry and numerals blew open the doors on all
sorts of financial problems. You can thank those Renaissance Italian bankers for
this along with the comparable schemes for long division and double-entry
bookkeeping.

This started the ball rolling on a variety of other notational advances that
eventually grew (with considerable borrowing from Arabic sources) into the lan-
guage of mathematics. Thus, by the seventeenth century, we had two well-
developed artificial languages: musical notation and mathematical notation
(algebra). Realizing the benefits these languages conferred upon their disci-
plines, some adventurous thinkers wondered if it might be possible to design
languages for other disciplines. The first efforts were directed at “philosophical
languages” that might liberate philosophers from the maddening vagaries of
natural language. This goal wasn’t really attained to any reasonable degree until
the work of George Boole some two centuries later (ever heard of Boolean alge-
bra?), but the light bulb had been turned on. 

For the first few hundred years, things went slowly, but the next big kick in
the pants came with the realization that many Eurasian languages were grouped
into a large family now called Indo-European. This triggered a frenzy of activity
in analyzing the relationships between languages, which in turn led to an under-
standing of a variety of basic principles of language development. And that led
the brazen thinkers of the nineteenth century to believe that they could improve
on nature. You probably know about the most successful of these, Esperanto,
but it wasn’t the first. There were plenty of others: Volapük (cleaned-up German
with politically useful token words from other European languages), Latino Sine
Flexione (cleaned-up Latin), and Romanal (another cleaned-up Latin) were just
a few. All of these languages boasted rationalized spelling, declension, and con-
jugation. They all fell afoul of nationalistic vocabulary preferences.

In the twentieth century, several attempts were made to get around this
political problem with “context-free” vocabularies. These used logical systems
for eliminating the arbitrariness of word assignments. In effect, they were struc-
turally organized vocabularies. Proceeding from an arbitrarily selected set of
one-syllable roots expressing fundamental concepts of human existence, they
created new words by compounding these fundamental single syllables. Thus,

6490 AID Chapter 22  10/21/02  1:10 PM  Page 274



Linguistics 275

the meaning of any word was logically derivable from its spelling. It was all won-
derfully logical and utterly unlearnable, but it made for great academic fun.

Another attempt, more appropriate to our needs as interactivity designers,
was Basic English, devised in the 1920s by a couple of linguistics professors.
Their goals were to ensure that the less-educated classes would have a workable
form of English, and to facilitate international communication. Their creation,
Basic English, boasted a stripped-down vocabulary of exactly 850 words: 100
Operations, 400 General Things, 200 Picturable Things, 100 General Qualities,
and 50 Opposite Qualities:

OPERATIONS (100 words)
come, get, give, go, keep, let, make, put, seem, take, be, do, have, say, see, send,
may, will about, across, after, against, among, at, before, between, by, down,
from, in, off, on, over, through, to, under, up, with, as, for, of, till, than, a, the,
all, any, every, no, other, some, such, that, this, I, he, you, who, and, because,
but, or, if, though, while, how, when, where, why, again, ever, far, forward, here,
near, now, out, still, then, there together, well almost, enough, even, little, much,
not, only, quite, so, very, tomorrow, yesterday north, south, east, west, please, yes

THINGS (400 General words)
account, act, addition, adjustment, advertisement, agreement, air, amount,
amusement, animal, answer, apparatus, approval, argument, art, attack, attempt,
attention, attraction, authority, back, balance, base, behavior, belief, birth, bit,
bite, blood, blow, body, brass, bread, breath, brother, building, burn, burst, busi-
ness, butter, canvas, care, cause, chalk, chance, change, cloth, coal, color, com-
fort, committee, company, comparison, competition, condition, connection,
control, cook, copper, copy, cork, cotton, cough, country, cover, crack, credit,
crime, crush, cry, current, curve, damage, danger, daughter, day, death, debt,
decision, degree, design, desire, destruction, detail, development, digestion,
direction, discovery, discussion, disease, disgust, distance, distribution, division,
doubt, drink, driving, dust, earth, edge, education, effect, end, error, event,
example, exchange, existence, expansion, experience, expert, fact, fall, family,
father, fear, feeling, fiction, field, fight, fire, flame, flight, flower, fold, food,
force, form, friend, front, fruit, glass, gold, government, grain, grass, grip,
group, growth, guide, harbor, harmony, hate, hearing, heat, help, history, hole,
hope, hour, humor ice, idea, impulse, increase, industry, ink, insect, instrument,
insurance, interest, invention, iron, jelly, join, journey, judge, jump, kick, kiss,
knowledge, land, language, laugh, law, lead, learning, leather, letter, level, lift,
light, limit, linen, liquid, list, look, loss, love, machine, man, manager, mark,
market, mass, meal, measure, meat, meeting, memory, metal, middle, milk,
mind, mine, minute, mist, money, month, morning ,mother, motion, mountain,
move, music, name, nation, need, news, night, noise, note, number, observation,
offer, oil, operation, opinion, order, organization, ornament, owner, page, pain,
paint, paper, part, paste, payment, peace, person, place, plant, play, pleasure,
point, poison, polish, porter, position, powder, power, price, print, process, pro-
duce, profit, property, prose, protest, pull, punishment, purpose, push, quality,
question, rain, range, rate, ray, reaction, reading, reason, record, regret, rela-
tion, religion, representative, request, respect, rest, reward, rhythm, rice, river,

6490 AID Chapter 22  10/21/02  1:10 PM  Page 275



276 Chapter 22

road, roll, room, rub, rule, run, salt, sand, scale, science, sea, seat, secretary,
selection, self, sense, servant, sex, shade, shake, shame, shock, side, sign, silk, sil-
ver, sister, size, sky, sleep, slip, slope, smash, smell, smile, smoke, sneeze, snow,
soap, society, son, song, sort, sound, soup, space, stage, start, statement, steam,
steel, step, stitch, stone, stop, story, stretch, structure, substance, sugar, sugges-
tion, summer, support, surprise, swim, system, talk, taste, tax, teaching, ten-
dency, test, theory, thing, thought, thunder, time, tin, top, touch, trade,
transport, trick, trouble, turn, twist, unit, use, value, verse, vessel, view, voice,
walk, war, wash, waste, water, wave, wax, way, weather, week, weight, wind, wine,
winter, woman, wood, wool, word, work, wound, writing, year

THINGS (200 Picturable words)
angle, ant, apple, arch, arm, army, baby, bag, ball, band, basin, basket, bath, bed,
bee, bell, berry, bird, blade, board, boat, bone, book, boot, bottle, box, boy,
brain, brake, branch, brick, bridge, brush, bucket, bulb, button, cake, camera,
card, cart, carriage, cat, chain, cheese, chest, chin, church, circle, clock, cloud,
coat, collar, comb, cord, cow, cup, curtain, cushion, dog, door, drain, drawer,
dress, drop, ear, egg, engine, eye, face, farm, feather, finger, fish, flag, floor, fly,
foot, fork, fowl, frame garden, girl, glove, goat, gun, hair, hammer, hand, hat,
head, heart, hook, horn, horse, hospital, house, island, jewel, kettle, key, knee,
knife, knot, leaf, leg, library, line, lip, lock, map, match, monkey, moon, mouth,
muscle, nail, neck, needle, nerve, net, nose, nut, office, orange, oven, parcel,
pen, pencil, picture, pig, pin, pipe, plane, plate, plough/plow, pocket, pot,
potato, prison, pump, rail, rat, receipt, ring, rod, roof, root, sail, school, scissors,
screw, seed, sheep, shelf, ship, shirt, shoe, skin, skirt, snake, sock, spade, sponge,
spoon, spring, square, stamp, star, station, stem, stick, stocking, stomach, store,
street, sun, table, tail, thread, throat, thumb, ticket, toe, tongue, tooth, town,
train, tray, tree, trousers, umbrella, wall, watch, wheel, whip, whistle, window,
wing, wire, worm

QUALITIES (100 General words)
able, acid, angry, automatic, beautiful, black, boiling, bright, broken, brown,
cheap, chemical, chief, clean, clear, common, complex, conscious, cut, deep,
dependent, early, elastic, electric, equal, fat, fertile, first, fixed, flat, free, fre-
quent, full, general, good, great, grey/gray, hanging, happy, hard, healthy, high,
hollow, important, kind, like, living, long, male, married, material, medical, mili-
tary, natural, necessary, new, normal, open, parallel, past, physical, political,
poor, possible, present, private, probable, quick, quiet, ready, red, regular,
responsible, right, round, same, second, separate, serious, sharp, smooth, sticky,
stiff, straight, strong, sudden, sweet, tall, thick, tight, tired, true, violent, waiting,
warm, wet, wide, wise, yellow, young

QUALITIES (50 Opposite words)
awake, bad, bent, bitter, blue, certain, cold, complete, cruel, dark, dead, dear, deli-
cate, different, dirty, dry, false, feeble, female, foolish, future, green, ill, last, late,
left, loose, loud, low, mixed, narrow, old, opposite, public, rough, sad, safe, secret,
short, shut, simple, slow, small, soft, solid, special, strange, thin, white, wrong

6490 AID Chapter 22  10/21/02  1:10 PM  Page 276



Linguistics 277

The entire vocabulary of Basic English fits on a single page. Particularly
impressive is the handling of verbs. There are only 18 verbs in Basic English: Be,
Come, Do, Get, Give, Go, Have, Keep, Let, Make, Put, Say, See, Seem, Send,
and Take. What makes the system work is the extension of these verbs with
prepositions. You can go for a walk, go to the store, go out of the house, go in
the tent, go over his head, go by the shop, go with your friend, go to the boss,
go on a hunch, and so on.

As you can see, their system required heavy use of prepositions to cover the
semantic ground stripped bare by their vocabulary depredations. By using
almost every verb-preposition combination possible, they also created some truly
confusing substitutions, and they also had problems with existing ambiguous
combinations such as “go for.” They designed a clever translation circular slide
rule, the Panopticon, a word wheel for constructing sentences in Basic English.
This was a mechanically operated combinatorial algorithm with seven nested
disks of cardboard. You could rotate the disks in any combination and obtain a
valid Basic English sentence. This demonstrates the computable algorithm
behind the operation of Basic English. Unfortunately, despite the support of
such luminaries as Winston Churchill, Basic English never caught on. Everybody
seemed to prefer English Pro Version 43.1.4.

Basic English, revised and updated with new vocabulary, could become the
basis for a semi-natural language for human-computer interaction. With a
goodly amount of effort, we could build a complete, consistent, and closed data-
base comprising the full meanings of the vocabulary of Basic English. The start-
ing point of this database would be a simple table cross-referencing every word
with every other word, specifying whether that pairing is legal. For example, we
could cross-reference “male” with “wine” and find that this pairing is not legal,
but the table would show that it is legal to pair “male” with “servant.” With this
table as our starting point, we could add a variety of semantic rules that would
yield a language that is fully computable, understandable by humans, and useful.
As yet, no work has been done in this direction. You may learn more about
Basic English at www.basiceng.com.

Lessons from Linguistics

The obvious conclusion to draw from this history is that all attempts to replace
anarchic natural languages with rationally designed languages have been inglorious
failures. One man’s logical language is another man’s confusing mess—and a lan-
guage community contains a lot of men (and even more people who aren’t men).

Another lesson, derivable from linguistics but obvious in our own experi-
ence, is that languages change with time. The specifics of linguistic change offer
some less obvious warnings for interactivity designers. The most common form
of linguistic change these days is vocabulary change. We don’t use hogshead as a
measure of volume, because we don’t need it anymore. And email wasn’t in the
Oxford English Dictionary last time I looked. We can expect some of the words
of our user interface languages to drift into disuse with time, and we can surely
expect to see new words arise; the butcon and the pop-up menu were not part
of the original Macintosh user interface.

6490 AID Chapter 22  10/21/02  1:10 PM  Page 277



278 Chapter 22

But vocabulary changes in other ways. Words take on additional meanings
or drift into different meanings. I think that, as the amount of data we sling
around increases, the tried-and-true scrollbar will be found inadequate to the
needs of traversing a truly huge dataset, in which case something new will
emerge: a super-scrollbar, perhaps, or perhaps something completely new.

Another important lesson from linguistics is the natural contraction of fre-
quently used words. The automobile was initially called a horseless carriage.
That got shortened to car. Shortening the length of a word is analogous to mak-
ing a verb more accessible. The butcon bar across the top of many windows is
just such a contraction: a way of making some commands more accessible.
Expect to see much more of this in the future; interface languages are growing,
which always increases the pressure for contraction.

A third lesson is that isolated speech communities spawn dialects that even-
tually grow into mutually incomprehensible languages. This shows up in the
computer community in a number of ways. During the 1980s, Microsoft suf-
fered from some insularity due to its location in Seattle; this isolation expressed
itself in a rather unique style of interactivity design that many outsiders consid-
ered, um, odd. By now, fortunately, Microsoft has assimilated so many others
become so large that it can lay claim to a kind of universality. L’État c’est moi.

The Clipboard

We can apply linguistic principles to better understand certain problems in
interactivity design. One case is provided by the clipboard. This is the hidden
vessel that contains whatever it is you cut or copy. When you paste, the contents
of the clipboard are dumped into your assigned slot. Three problems darken the
reputation of the clipboard: (1) you can’t see its contents, (2) it cannot contain
all types of data, and (3) you have only one clipboard; when you need to per-
form multiple moves, you can’t assign one clipboard for each item to be moved. 

Fortunately, a new interface concept is slowly replacing the clipboard: direct
dragging of data from one location to another. This completely solves the first
two problems. The third and fourth problems, it turns out, exist only in the
minds of power users who expect too much complexity. 

If you think in linguistic terms, the relationship between the clipboard and
direct dragging becomes clear. As parts of speech, both are pronouns; the clip-
board functions exactly like the pronoun it. Direct dragging functions exactly
like the pronoun this. Using the clipboard could be narrated as, “Computer, you
see this data right here? Copy it. Now paste it over there.” Directly dragging data
would be narrated as, “Computer, copy this to there.” The conciseness of the
second sentence compared to the first is analogous to the efficiency of dragging
compared to using the clipboard. When using the clipboard, you must explicitly
declare the meaning of it before doing anything. Moreover, it is linguistically
weaker than this because the referent of it is indirectly expressed, while the refer-

6490 AID Chapter 22  10/21/02  1:10 PM  Page 278



Linguistics 279

ent of this is immediately available. Reflect: it is the most widely applicable and
least explicit pronoun in the English language.

We can now apply our linguistic thinking to gain better insight into the use
of the clipboard. Accumulating multiple entries into a clipboard would be akin
to declaring: “Computer, see this right here? And this too? And this too? Cut it
and move it here.” The problem with this wording is instantly obvious: the pro-
noun it is singular, but the command refers to more than one object. The solu-
tion, of course, is to add a new word that explicitly declares plurality: them. If
you are willing to create that special new word in your interface language, mak-
ing certain that it is distinct from “it,” then you can proceed with your accumu-
lating clipboard—but not otherwise. And remember, too, that an accumulating
clipboard is harder to understand when the contents of a clipboard are dis-
played as per my recommendations further on.

The idea of multiple clipboards likewise looks silly when you approach it from
a linguistic angle: “Computer, see this? Call it ‘It1.’ See this? Call it ‘It2.’ . . . ”
Yuckers! Imagine framing a sentence with multiple pronouns of the same type:
“When we tried to plug it into it, it wouldn’t fit into the hole in it.” Huh?

There is nothing intrinsically wrong with using a clipboard; after all, pro-
nouns are very handy parts of speech, and to ban pronouns from a design
would be as stupid as banning pronouns from language. The primary problem
with clipboards is the same as that with pronouns: sometimes you can get con-
fused over the referent of the pronoun. You must therefore make the contents
of your clipboard perfectly clear to your user. One way to do this is to post a
tiny clipboard window showing the contents of the clipboard. This need not be
huge; showing the first three or four words would be enough to refresh the
user’s memory. 

Another useful lesson from linguistics is that the pronoun it can be applied
to any noun in the language; your clipboard should be the same. A clipboard
should be able to hold text, formatting styles, formulas, numbers, images, video
sequences, colors—any data structure that your program permits the user to
edit. This can create serious problems with data typing. What if a user tries to
paste “the quality of mercy” into a color specification slot? The answer to this,
once again, is to display the contents of the clipboard.

It is tempting to solve this problem by creating a multidimensional clip-
board. The clipboard can simultaneously hold every different data type: text,
colors, numbers, images, and so forth. When the user pastes into a slot, the clip-
board automatically pastes whatever it holds of that particular data type. Thus,
the user could accumulate text, colors, and images into the clipboard and then
paste into a color slot and have the color pasted, paste into a text slot and have
the text pasted, and so forth. Again, the linguistic model shows the flaw in the
thinking. We maintain only three flavors of personal pronoun: he, she, and it.
Imagine trying to keep track of a dozen different flavors. 

6490 AID Chapter 22  10/21/02  1:10 PM  Page 279



280 Chapter 22

Some Possible Approaches to Language Design

I can offer two possible grammars for use in language design: inverse parsers
and creoles. 

Inverse Parsers

Parsing is the process by which a computer program analyzes the structure of a
sentence to figure out what it means. Inverse parsing inverts the process: the
computer program uses the structure of a partially completed input sentence to
compile a list of acceptable choices for the user to peruse. We all use first-order
inverse parsing whenever we use a menu whose menu items might be dimmed
and unselectable. For example, if we consult the Edit menu looking for the
Copy command, we might find that it is dimmed because no item to copy has
been selected. The sentence we would like to say to the computer is: “This text—
copy it.” But before we can say “copy it,” we must first say “This text” by select-
ing some text. The computer therefore dims the Copy menu item until we have
selected some text.

The big idea behind inverse parsing is to extend this concept with additional
steps. For example, suppose that I had an advanced computer that could send
text to anybody in the world. Thus, I wouldn’t need to copy and paste it into an
email letter and then send the email letter; instead, I would just select the text
and then use a magic menu command that says “send it to.” The sentence I have
entered so far now reads, “This text—send it to —.” Obviously, I need to enter a
third parameter: the person to whom I wish to send it. The computer would
therefore whip up a menu listing all of my likely email correspondents, and I
could select one person so that the complete sentence reads, “This text—send it
to—Uncle Fredegund.” We could go as far as we need to go, ending up with sen-
tences like, “This text—send it to—Uncle Fredegund—via my PigNet account.”

Yes, this is modal input, and modal input is generally a bad thing. Modal
input is any system of input in which the meaning of a command depends upon
what happened immediately beforehand. For example, suppose that we were to
reverse the standard sequence of selecting something in a document and then
applying an editing verb to it. That is, instead of selecting a paragraph and then
deleting it, suppose that we first choose the Delete verb and then select the text
to delete. This is dangerous because we might forget what we said a moment ago
and become confused. We select Delete, and the phone rings; we talk for half an
hour, turn back to the computer, and click a memo we were working on yester-
day. Poof—memo deleted! We therefore prefer modeless input, in which each
command always means the same thing, regardless of what preceded it.
Modeless input is harder to screw up than modal input.

But the problem lies not in modeness per se; it is the likelihood of confusing
the user. If we can prevent that confusion, then the argument against using a
modal input scheme vanishes. After all, natural language is highly modal; the
meaning of any utterance depends completely upon the context in which it is used.

6490 AID Chapter 22  10/21/02  1:10 PM  Page 280



Linguistics 281

The most common way of handling modal input is with the simple line
input scheme, in which we type our commands. Partway through, our text input
might look like this:

SEND/SELECTION/UNCLE FREDEGUND/PIGNET/

This might remind you of the bad old days of DOS, and in fact that is pre-
cisely the input scheme behind DOS and all the other simple parser schemes.
The parser approach suffers a fatal flaw: there is no way to know in advance
what text is legal and what text isn’t. The user must guess commands, hoping
that an experimental command like DET means determine rather than deto-
nate. In an inverse parser, this problem is solved by replacing the freeform text
input with a pop-up menu input scheme.

Imagine a simple linear sequence of pop-up menus, like so:

The user clicks Verb, and a pop-up menu offers a variety of verbs such as
Open, Print, and Send:

The user chooses, say, the verb Send, and the display now looks like this:

Clicking the Subject pop-up menu reveals a list of menu options for what
exactly is to be sent: Selection, This File, A Disk File, and so on. The user
chooses Selection, and then raises the To Whom? pop-up menu, filling in the
recipient of the email. And so on until the sentence reads:

Satisfied with this input, the user clicks Do It. Poof!
This approach is subtly different from a conventional dialog box. This

approach reads like a sentence; a dialog box is a spatial jumble of items. There
wasn’t a problem when dialog boxes were small, containing a handful of items.

6490 AID Chapter 22  10/21/02  1:10 PM  Page 281



282 Chapter 22

But nowadays we see huge dialog boxes with—I do not exaggerate—dozens of
items to be set. We even see dialog sub-boxes: dialog boxes inside other dialog
boxes, raised with tab buttons or pushbuttons. We are stretching the concept of
the dialog box beyond its natural range of applicability. For big jobs, we need a
new approach, something that people can make sense of, and to find it, we must
take advantage of people’s most powerful built- in construct: language.

Let’s take a common example: the clumsy and complicated schemes used to
program VCRs to record television shows at different times. Here’s how you
would express such a set of commands in plain English:

“Mister VCR, I want you to record Channel 8 from 9:00 to 10:00 every
Wednesday night. Also, please record Channel 4 from 6:30 to 7:00 every week-
day night. Last, record Channel 37 from 8:00 to 10:00 this Thursday night.”

Now let’s just suppose that your computer was rigged to control the VCR.
Then you would enter three commands, one for each clause in the sentence,
and the first would look like this:

Note how the software inserted the prepositions from and to as soon as the
verb record was chosen. It wouldn’t be hard to improve this with self-shortening
menus to close up the gaps and make the sentence even more readable:

6490 AID Chapter 22  10/21/02  1:10 PM  Page 282



Linguistics 283

And here’s what a dialog box to accomplish the same thing might look like:

Which of these approaches is easier to understand? There’s no functional
difference between these two methods; they say the same thing. But the verbal
approach says its piece in a format that the human brain is more familiar with.

There is a difficulty in this approach: natural language teems with little cues
that help us sort out what a sentence means and how to make sense of it.
Sometimes they’re just one or two characters tacked onto the ends of words: -’s,
-ed, -s, -ing, and so on. Sometimes they are changes in the words themselves or
use of auxiliary words: have, had, will have, or prepositions or adverbs. But the
scheme I have shown would require that the verbs carry within themselves any
such cues for inclusion, such as the two prepositions used in the example. This,
in turn, would make possible some awkward situations if the user changes the
verb in mid-sentence. When this arises in natural language, we just give up and
start over with a new sentence; much the same would have to be done here.

There are numerous variations on the inverse-parser idea, but there are two
core concepts: precalculation of grammatically acceptable options, and display
of the sentence abuilding. They are, in a way, a hybrid of the old line- input user
interface and the menu-driven user interface. I am certain that inverse parsers
are better than conventional parsers, which place the user in the role of suppli-
cant and the computer in the role of judge. The computer should never be the
judge of the user; the computer must always be the user’s servant. This is the
fundamental reason why precalculated inverse parsers are superior to postcalcu-
lated parsers. However, I have reservations about applying inverse parsers to
especially large or complicated problems; my hunch is that the scheme works
best in the range of problems currently tackled by personal computers. By the
time we master the scheme, people will be doing things on the computer too
complicated to handle with inverse parsers.

Creole

Here’s an approach that’s closer to human verbal reasoning and less artificial,
yet within the grasp of computability. Creoles are languages created sponta-
neously by the children of immigrants in a linguistically unstable community.
They last for one generation and then fade from memory as the next generation

6490 AID Chapter 22  10/21/02  1:10 PM  Page 283



284 Chapter 22

learns the dominant language. Roughly speaking, creoles combine the vocabu-
laries of two languages while falling back on a simple and standard grammar.
Since creoles come out of the mouths of babes, they are believed to reflect the
instinctive grammatical preferences of our species, whatever those might be.
This belief is supported by the striking grammatical similarities between creoles
created in different linguistic contexts. 

I still don’t grasp the fine points of creole grammar, but I can relate the
basic points in a manner that reflects my simple-minded understanding of the
subject. First, creoles rely on auxiliary words for conjugation. For example:

Hypothetical English Creolized English

Present tense singular he walks he walk

Past tense singular he walked he been walk

Future tense singular he will walk he gwanna walk

Second, creoles never coin new vocabulary; they borrow the vocabulary of
the parent languages and impose their own grammar. This makes them easy to
use; people don’t have to memorize any new words. The grammar that they use
is picked up with amazing speed, because it reflects our instinctive grammatical
preferences.

Third, they are clumsier than modern languages, both in terms of utterance
length and semantic resolution.

So here is a user-computer interaction in my hypothetical creolized English,
with English commentary on the right:

“Foo, use the database that I been “Foo” is the nonsense word used to 
open when this morning. Tell me, identify the computer. This ensures that
how many records be in it?” it won’t be confused with other text.

“2867 records”

“Do sort the records by the field called “Do” indicates a command. “Tell me” 
Age. Tell me, what be the three highest indicates voice output. Labels are denoted 
numbers in the field called Age?” with the prefix “called.”

“87, 74, and 74.”

“Use these records. Do select the text “Use” makes its object the topic of 
in the field called Name in these conversation.
records. Do recognize these texts as
persons. Do start a letter to each of
these persons, using for the address
the text in the field called Address.”

“But second record has no text in An error message.
the field called Address.”

“Do not use that one record.” Removes the bad record from the topic
of conversation.

6490 AID Chapter 22  10/21/02  1:10 PM  Page 284



Linguistics 285

“But tell me the text of the letter.” Unfinished business.

“The text of the letter be as follows: “Foo” and “unfoo” mark places where the
Dear Sir or Madam: Foo, paragraph, user is popping out of the letter to give 
unfoo. We are having a special sale commands to the computer.
on wheelchairs this week. We have all
kinds of wheelchairs: big ones, little
ones, motorized ones. Come in and
look them over soon. Foo, paragraph.
Do apply the signature called
Woody’s Custom Wheels.”

[The computer interrupts:] “But I Error message.
can’t find the signature called
Woody’s Custom Wheels.”

“Oops. Do apply the signature called
Sedate Senior Mobility.”

“But the text of the letter be not Unfinished business.
complete.”

“That be the end of the text.”

“Do confirm that be the end of the The user should properly have called it 
text of the letter.” “the text of the letter.”

“Yes”

“Do confirm this letter.” [The 
computer displays the letter on the 
monitor.]

“No. Do change all texts that be Speech recognition error.
wheel cherry to be wheel chair.”

“Do confirm this letter.”

“No. Do change all texts that be User gives up and spells the word.
wheel chair to be w-h-e-e-l-c-h-a- i- r.”

“Do confirm this letter.”

“Yes”

This exchange handles a complex interaction: database search, word process-
ing, and mail merge. The creole is certainly up to the task, but the human would
have to learn the narrow meanings of some of the terms. For example, the temp-
tation would be to say “how many records are in it” when the correct usage is
“how many records be in it.” Collapsing all verbs down to their infinitives will not
come easily to most people at first, but we can rely on an easy mental shift to
“baby talk.” We all instinctively know how to talk to infants, simplifying our natu-
ral language to make it comprehensible. We can do the same with computers, for
lord knows they are certainly infantile in their linguistic talents.

6490 AID Chapter 22  10/21/02  1:10 PM  Page 285



286 Chapter 22

I have not shown how the computer would handle unknown terminology,
but the process of sorting out such misunderstandings, while tedious, would be
straightforward and need only be invoked once for each special term.

Creoles piggyback directly onto voice recognition and synthesis technology.
These two technologies are just now coming into their own, but integrating
them into our designs requires grammar; creole could provide that grammar.

While the use of creoles may seem far-fetched, we must remember that the
alternative of using genuine natural language is, strictly speaking, unattainable
in our lifetimes. In practice, natural language processing systems will suffer from
frequent breakdowns; users will eventually learn to speak baby talk to them.
Since natural language systems will inevitably be much larger and slower than
creole systems, and users will end up speaking baby talk anyway, and we don’t
need the expressive richness that creoles lack, what point is there in holding out
for natural language? We could be using creole-based systems right now; all the
technology we need is in place. All we need now is a major company to put its
weight behind the idea; from there, its utility will cause it to spread quickly
through the community.

Who Designs It?

With the passage of time, the community language of interaction will grow
richer and more detailed and will impose itself more imperiously upon the indi-
vidual designer, leaving less room for variability in the design of languages spe-
cific to the application. This makes the design of the community language of
interaction all the more important to the community. An ugly political problem
intrudes upon our intellectually pure considerations: who will define the com-
munity language of interaction? Three answers are available:

The first answer would be the company that is most successful in selling
software. (Guess who that might be.) The winner of the market competition
defines the language. This solution boasts a simple pragmatism: After all, the
winner of the market competition pretty much defines the language anyway.
Why not recognize the market realities and go with the market’s flow? The prob-
lem we face is not so much getting it right as getting an “it” in the first place.
We all know that multiple definitions of the language lead to confusion and
anarchy. This problem is a matter of setting standards, and if one company has
successfully set some standards, let’s embrace that success as a benefit for every-
body. Software designers will know what to design for. Consumers will know
what to expect. Everybody wins.

But there are also flaws in this approach. The first is history: Look at
Microsoft’s track record in user interface design. Do you really want to surren-
der control of our human-computer interface to these people? Ack!

Second is the danger of granting a monopoly over what is essentially a pub-
lic utility. Our experience with public utilities has shown that they are always
slow and never efficient; finding ways to break them up has been one of the
underlying sources of economic growth in the last few decades. We don’t want
to create a new monopoly.

6490 AID Chapter 22  10/21/02  1:10 PM  Page 286



Linguistics 287

Then there’s the risk that a single company might use this monopoly power
to benefit itself at the expense of consumers. Naah, Microsoft would never do
that! Right?

A second approach is to grant the monopoly power to a disinterested group
of wise old men, collectively known as a standards committee. The engineering
industries have scores of these august bodies, dictating everything from the
thickness of the insulation on a wire to the specifications for a computer lan-
guage. Indeed, we also have experience with a standards committee for a natural
language: the French have just such a committee that publishes the official dic-
tionary for the French language. With all this operating experience, we will have
no problem creating an effective standards committee for our user interface lan-
guage. And its independence ensures that it won’t show favoritism to any single
company. Populated with representatives from industry and academia, it can
command the respect required to make the standards stick.

On the other hand, there are some problems with a standards committee.
First, standards committees are notoriously slow in getting anything done. The
standards for the most heavily used computer language, C++, are perennially
about five years behind industry practice. Every company that sells a version of
C++ issues two flavors: a flavor that meets the ANSI standards, and a flavor with
all the latest improvements; most programmers rely on the latter, falling back on
the ANSI standard version in certain cases requiring broad compatibility with
several dramatically different platforms and little in the way of modern features.

Furthermore, standards committees end up being horribly political. There
will surely be at least one representative from Microsoft on any such committee,
and perhaps a representative from Apple. These two will bicker endlessly, and in
tense situations the Microsoft representative will likely threaten that Microsoft
might not implement the proposed standard, thereby reducing it to irrelevance,
if Microsoft doesn’t get its way. This kind of thing has been known to happen on
standards committees many times in the past.

Which leads us to the third problem with standards committees: in their
efforts to find a politically viable solution, they sometimes end up concocting a
ridiculous standard that nobody will ever use in its entirety, a bloated farce that
crudely patches together completely incompatible ideas to get one overarching
“standard.” This way, everybody can go ahead with what they’ve already set their
hearts on and still meet the “standard.” In effect, the standard is defined to be
anarchy. The standard for RS-232, a wiring and signal protocol for connecting
computers, provides the perfect example: in practice, there really is no standard.
Hooking up one RS-232 machine to another one frequently requires tricky
measurements and occasionally an oscilloscope.

The third approach is to accept anarchy and call it democracy, although I’m
not being as cynical as my clever turn of phrase suggests. The idea here is to
decentralize the language-defining power, devolving it to all interactivity design-
ers. This, of course, requires, to use the phrase used to promulgate democracy,
an “informed citizenry”—interactivity designers must be knowledgeable about
their business if they are to define the language used by the rest of us. But hey,
you read this book; isn’t that enough?

6490 AID Chapter 22  10/21/02  1:10 PM  Page 287



288 Chapter 22

One argument for the democratic approach is that it is how natural lan-
guages keep up with changes in societies. As new concepts arise and old ones
fade, the words for them are coined or forgotten. When was the last time you
drank a firkin of coffee? Aren’t you glad that you can refer to your means of
transportation as a car rather than a horseless carriage? In the fast-moving
world of computers, you can expect old interface concepts to die fast (joystick,
parser, DOS, batch processing) and new ones to arise just as quickly.

The most compelling argument for democracy lies in its embarrassingly
demonstrated superiority over the centrally planned approaches to user inter-
face. The first coherent attempt to define a user interface standard was the
research work undertaken at Xerox PARC in the 1970s. The revolutionary results
of this work were embraced (or plagiarized, depending on your point of view) by
Apple for the Macintosh. Apple went on to diligently enforce its user interface
language, against a small amount of resistance from software developers, and the
result was a pretty good language, but Apple’s attempts to maintain the standard
tended to stifle linguistic innovation. Apple tried to compensate by spending
large amounts of money on research to expand the language, and it did a
respectable job of upgrading the Macintosh language of interface. But several
factors in the mid 1990s converged to degrade Apple’s unique position as arbiter
of user interface language. First, the introduction of Windows 95 created the first
creatively viable alternative to the Macintosh language, and suddenly Apple
found itself in a meaningful competition with Microsoft in the matter of design-
ing a user interface language. Microsoft’s user interface language was little more
than a copy of Apple’s, and so a bastard standard was born, whose illegitimacy
encouraged individual developers to experiment. Suddenly, a plethora of linguis-
tic innovations appeared, most of which were half-baked and useless. A few ideas,
however, had merit. The software design community is just like any linguistic
community: when people see a good idea (word), they used it themselves. New
forms of expression appeared and were refined incrementally by the community. 

A good example of this is the butcon, an icon that operates as a button.
Now, there were many early versions of this concept; I myself used butcons in a
published design as early as 1987. They were very close to the modern concept:
32-by-32 images with little images inside, all arranged in a geometric order.
Clicking one inverted its color; click-and-release on one executed its associated
command. It even had a pop-up text expression of its meaning, although it
didn’t operate in quite the same way that modern tooltips operate. Nevertheless,
we can surely cite this as one of the many precursors of the butcon.

What converted the butcon from a vagabond concept to a linguistic stan-
dard was a series of embellishments, of which the use of color was probably the
most important. Once designers could count on their users’ having at least 8 -bit
color, they could create icons that actually meant something. The black-and-
white icons of my design were, I admit, difficult to interpret. Color dramatically
increased the expressiveness of the icons and pushed them over the brink of
expressive utility. 

Three other embellishments further improved their utility. Shadowing com-
municated that the icon was not merely a static image, but a button in three
dimensions that could be “pressed.” Placing the butcons in a horizontal bar at

6490 AID Chapter 22  10/21/02  1:10 PM  Page 288



Linguistics 289

the top of the window allowed designers to grant special visual status to the
most important commands, adding a new tier to the hierarchy of commands,
above that of menus and below that of immediate cursor-cum-clicking com-
mands on the imagery in the active window. Last, the tooltip phrase explaining
the function of the butcon did much to overcome the visual ambiguity intrinsic
to icons, and having this pop-up appear when the cursor merely hovered station-
ary over the icon was a big factor in making the device effective.

None of these innovations came from the labs of Microsoft and Apple; they
arose spontaneously from the design community. I’m sure that plenty of design-
ers will clamor to have their own work recognized as the ground-breaker, and
I’m sure that somewhere in the archives of Microsoft and Apple there’s software
with some or even all of these elements. But what’s important here is the undeni-
able fact that nobody can convincingly claim that he alone created the idea that
everybody else adopted. It arose in bits and pieces, in numerous variations, until
the community as a whole settled on the common factors that make the butcon
work so well. And the process doesn’t end here; people will continue to tinker
with the butcon, and more embellishments will become part of the standard.

The butcon demonstrates the superiority of the democratic strategy over
the centrally planned strategy. No individual designer, no matter how brilliant,
can ever match the creative energy and mature judgment of an entire commu-
nity of designers.

The democratic process exploded with the success of the web. Suddenly,
there were thousands of designers putting up all sorts of crazy things on the
web. We must admit that the great majority of those innovations were truly stu-
pid: surely the “invisible hotspot” must rank high in any list of such inanities.
But two factors more than compensated for opening the gates to the maniacs:
the sheer volume of their contributions, and the vastly accelerated cycle of eval-
uation that the web offered. It’s ridiculously simple for any nitwit to create a
website, and most of them have risen to the challenge. Their complete igno-
rance of even the rudiments of interface design has enabled them to spawn a
nightmare of demonic designs, hair-raising hyperlinks, and stomach-emptying
structures. Yet, just as one genetic mutation in 10 thousand might yield a mar-
ginally more adaptive creature, the creative craziness of this group has occasion-
ally, by towering dumb luck, generated a useful idea.

Add to this the hothouse atmosphere of the web, where word of mouth
travels by email to designers who are online 16 hours a day, and you have a sys-
tem that can detect rare innovations in a matter of hours, copy them in a matter
of days, and improve on them in a matter of weeks. No consciously designed
institution can match such performance.

Of course, anarchy has its drawbacks; millions of truly execrable web pages
shout their confirmations of this truth. But this is the argument that elitists of
all stripes have proffered for centuries. From Plato to the European aristocracy
to the Communists, the belief that smart people could run the country better
than the rabble has run deep. It took Thomas Jefferson and a couple of cen-
turies of trial and error to demonstrate that the rabble could do the job better
than the smart people. We are going through the same process in a couple of
decades—it would have been faster if we had been blessed with a Thomas

6490 AID Chapter 22  10/21/02  1:10 PM  Page 289



290 Chapter 22

Jefferson back in 1985. In the absence of that great genius, I will arrogate the
mantle of the “20-20 hindsight Thomas Jefferson” and argue that we should at
least understand and embrace the brilliant solution that we have already created
and adopted. Whether it’s a government, an economy, a natural language, or a
language of human-computer interaction, so long as the community is large
enough and intercommunicative enough, democracy works best.

The most powerful construct in the human mind is language. Designers who seek to
communicate with that in mind would do well to study linguistics and to consider the
linguistic implications of their decisions. We desperately need a standard language of
interaction for the computing community as a whole.

6490 AID Chapter 22  10/21/02  1:10 PM  Page 290



23
M E T A P H O R

Metaphor is a common device in interactivity design,
but its application is haphazard. Here I reduce

metaphor to a series of simpler steps—but I do not
address the higher creative issues it raises.

Metaphor is one of those irritatingly vague concepts—like consciousness—
onto which thinkers have slathered tidal waves of words without ever accom-
plishing much. Sheer weight of verbiage has not served us well. Yet the concept
requires our attention because it underlies so much of our work in interactivity.
I request that the reader cut me some slack in this chapter; if we can revere
Aristotle despite his failure to solve the problem of metaphor, then surely you
can smile indulgently as I flounder around the topic.

Why should an interactivity designer worry about metaphor? Because at a
deep level, every interactivity designer uses metaphor. The software jungle
teems with metaphors. The trash bin on your desktop swarms not with flies,
clangs not, and smells just fine, but you recognize it as a trash bin. Its relation-
ship with a real trash bin is strictly metaphorical. A column of numbers on a
spreadsheet is a metaphor. After all, the only reason we always place summed
numbers in a column is because that’s how we carry out the addition with pencil
and paper. A page image in a word processor is not the same thing as the
printed page: it is a metaphor for the printed page. The old sawcronym, WYSI-
WYG (What You See Is What You Get) has a hidden gotcha: in between seeing
and getting lies a certain amount of metaphorical transformation. The clumsy

6490 AID Chapter 23  10/21/02  2:31 PM  Page 291



292 Chapter 23

unreadable 9 -point fonts on the screen leap into sharp focus on the printed
page. And of course, every icon ever used is a metaphor.

First you must understand a little about the concept. By applying a small
amount of neurophysiology, we can get a functional grip on the idea. Please
inspect this image:

This is an easy image to recognize: a person holding a black ball. But now
let’s zero in on one small portion of the image:

Again, this is fairly easy to recognize as an eye, but now let’s isolate
even further:

6490 AID Chapter 23  10/21/02  2:31 PM  Page 292



Metaphor 293

Now, all by itself, just how easily can you recognize this as a pupil? When I
use my photo-retouching software on this image, no transformation I can find
will produce a circle for the pupil. Yet your visual system is capable of determin-
ing that it’s a circular pupil. How? By a long and involved process called feature
extraction. The first and simplest step in feature extraction is called edge detec-
tion; this processing is actually done by the retina and yields something like this:

Note how much cleaner this image is; much of the visual noise has been
removed, and the edges have been sharpened. Another process is texture recog-
nition, which allows us to guess the shape of three-dimensional objects (remem-
ber, the image we start with is only two-dimensional) by noting the way that the
texture changes. For example, our mental software will readily note from the
first image that the forehead curves away from the light as we move across it
from left to right.

A third and quite powerful process is facial feature extraction. Our brains
are wired up with lots of neural arrays for recognizing the subtle nuances of
facial expression. Introspect as you inspect these “faces”:

6490 AID Chapter 23  10/21/02  2:31 PM  Page 293



294 Chapter 23

Your neural circuitry serves to superimpose facial features onto images.
That’s why you can see a circular pupil in the first image: it isn’t circular, but your
neural circuitry recognizes the overall pattern as that of a face and therefore
(quite correctly) interprets the fuzzy image as a pupil, which it already knows to
be circular. The trick lies in the recognition of the overall pattern. If we could
eavesdrop on a brain sorting out that image, we might hear the following:

“Well, there’s an oval shape; that suggests a face. Now look for eyes: hmmm,
it’s not so clear. I can make out one eye, but the other one is hard to see. Let’s
check out the next most important facial feature: the mouth. Again, there’s a
horizontal line at about the right place, but it doesn’t extend all the way across.
So far, we might have a face, but we’ll need to verify some minor features. Is
there a nose? Oh yes, that’s a clear nose in exactly the right place. Hair? Yes,
there’s definitely hair along the top of the head. Ears? Yes, I think that’s an ear
on the face’s right side. Correct facial curvature? Definitely along the forehead,
and pretty clear on the cheek and chin. How about eyebrows, eyelid shape, and
pupil? Well, again, they’re quite clear on the right eye, but hard to see on the
left. So let’s decide this is a face. Now we’ll go back and fill in the parts that we
couldn’t otherwise recognize. The left eye must be that little burble of pixels,
and the mouth extends into the shadow, and.…”

Here’s the big idea that emerges from this discussion: to the brain, a face is
defined as a collection of features: an oval shape with two eyes symmetrically
placed about a third of the way down from the top, and a mouth about two-
thirds of the way down, and lots of secondary features such as a nose, hair, ears,
eyebrows, and so on. Put those features together, and you’ve got a face, as far as
the brain is concerned. There isn’t a person on the planet who would not recog-
nize this as a face:

The brain is not an open-minded observer of reality: it insists on jamming
everything it sees into one of its preconceived patterns, because pattern recogni-
tion is the fundamental technique by which neural circuitry works. This is
important!!! We never see the world as it truly is; instead, we see it solely in

6490 AID Chapter 23  10/21/02  2:31 PM  Page 294



Metaphor 295

terms of the patterns that we expect and are able to recognize. Every image we
perceive is ruthlessly broken up into a set of features, and then those features
are matched against previously established pattern templates until a match is
found. The cardinal rule is simple: find a pattern match! No matter how con-
fused or arbitrary an image might be, the brain will come up with the closest
match it can. We look at the moon and see a man; we look at clouds and see
dragons, flowers, or whatever strikes our visual fancy.

Herein lies the fundamental basis of metaphor. Any image that fits a prede-
fined feature set is interpreted as the object defined by the feature set—even if
we know that it isn’t. We know perfectly well that an electrical outlet is not a
face, yet our brains see a face in it. An outlet is “like” a face; it is an unintended
metaphor for a face. A cane is not a leg, yet the sphinx threatened to kill
Oedipus if he failed to recognize the metaphorical connection between canes
and legs: they are both long straight things that support an animal as it walks.

Thus, your customer is a brain programmed, either from birth or from
experience, with a bunch of “feature sets” that define things that the brain can
recognize. If you communicate something to it, that brain will not recognize it
for what it “truly” is, but will instead recognize it only when it fits into one of its
preexisting pattern templates. That brain is not scientific about the recognition
process; it will not withhold judgment until it has enough data to confirm the
hypothesis. The brain will instead latch onto the best fit it can find, regardless
of how weak the fit might be.

This is why we humans can be so destructively irrational. We Americans
have read about Arab terrorists for so long that when we actually encounter an
Arab face to face, we flinch, no matter how nice a person he actually is. My wife
once pulled a bit of something out of her enchilada and it looked for all the
world like some sort of multi-legged insect. Despite my careful examination of
the object and confirmation that it was vegetable, not animal, my wife could not
eat the rest of her meal, and the management, recognizing the realities of
human vision, graciously refused to charge us for her meal, even though the
cooks had made no mistake.

As always, there’s lemonade hiding inside this neural lemon. It may yield
lots of irrational results, but it also makes your job feasible. After all, if the
human brain were obsessively literal and demanded absolute nonmetaphorical
truth, how could you ever convince it that the pixels flickering on the monitor
screen have anything to do with budgets, documents, or databases?

The trick, which artists have known for millennia and programmers still
haven’t figured out, is that we achieve more by stripping away detail than by
adding it. The painter or cartoonist strives not to achieve photographic realism,
but to strip away image detail to ensure that the brain zeros in on the precise

6490 AID Chapter 23  10/21/02  2:31 PM  Page 295



296 Chapter 23

pattern intended. Of these two images, the simpler one communicates “happi-
ness” more quickly: 

The simpler image communicates happiness better because all unnecessary
detail has been eliminated. By giving the brain a bare minimum of information,
we force it to recognize the pattern “happiness,” even though there’s not
enough information to “truly” or “accurately” depict a human face. The only
features presented are those necessary to trigger recognition of the mental tem-
plate for “happiness.”

In actual practice, metaphor is used more heavily in language than in image
processing, and because language covers so much more mental territory than
vision, metaphor is more powerful in language. The mechanism, though, is the
same. Each word we use is a label for a feature set or template. Thus, when I use
the word leg, I might have the following feature set in mind:

• Animate

• External

• Supports body weight

• Makes contact with ground

• Long and thin

• Moves when walking or running

• Stationary when standing

Now, the word cane matches five of the seven features in this feature set;
since that’s a mildly good fit, we are willing to metaphorically think of a cane as
if it were a leg. A table leg is an even better fit because it matches six of the
seven features. Thus, we are perfectly happy calling it a leg even though it isn’t a
leg (it does not satisfy the first feature requirement).

6490 AID Chapter 23  10/21/02  2:31 PM  Page 296



Metaphor 297

Metaphor Creation

Metaphor creation is a profoundly creative act, yet the basics can be reduced to five
simple steps. These don’t constitute a formula for the creation of the most pro-
found metaphors, but they are serviceable for the problems of software design.

Step 1

List the features that constitute the feature set of the thing you wish to describe
with a metaphor. You need not ensure that each feature is independent of all
others; overlap is not a problem. For example, if I wanted to use leg as the
receiving end of a new metaphor, I would use the feature set listed in the pre-
ceding section to complete Step 1.

Step 2

List all objects whose feature sets contain many features in common with your
first list. Their feature sets need not match the feature set of the metaphoree;
they need only share some features in common. This list could be huge, but the
human brain is shockingly fast at sweeping through its knowledge base to find
such things. Think how fast people can solve riddles.

For the leg example, here are some things I come up with: post, tree trunk,
pillar, wheel.

Step 3

Compare each candidate’s feature set with the metaphoree’s feature set, noting
features that match and features that don’t match. Let’s do it for leg and wheel:

Leg Wheel

Animate X

External limb ✓

Supports body weight ✓

Makes contact with ground ✓

Long and thin X

Moves when walking or running ✓

Stationary when standing ✓

X Round

Step 4

Isolate the mismatches: for the leg, they are animate and long and thin; for the
wheel, there’s only one: round. 

6490 AID Chapter 23  10/21/02  2:31 PM  Page 297



298 Chapter 23

Step 5

Metaphor requires you to use some of the matched features and ignore or
negate each of the mismatches. For example, I would implement the wheel > leg
metaphor by sweeping the issue of shape under the rug and focusing the
reader’s attention on matching features:
The jeep struggled desperately to find its footing on the steep slope, planting its wheels on
the few solid rocks and lurching forward, only to slip backward on the loose gravel.

This metaphor emphasizes the action of foot and leg on difficult ground.
The truck dug its heels into the pavement.

Here we have an explicit substitution.
After he installed monster tires on his VW truck, Farley christened it “Shirley Temple
Meets Arnold Schwarzenegger.” 

This metaphor negates the animate mismatch by setting up an internal com-
parison of animate objects. In other words, the relationship between Shirley
Temple and Arnold Schwarzenegger is similar to the relationship between a VW
truck and monster tires.
The motorcycle’s circular legs drove him forward. 

The adjective circular explicitly negates the shape mismatch.
In visual use, the metaphor has been successfully used in both directions.

Cartoon characters running fast have their legs replaced with circular blur
lines—but legs don’t move in circles: wheels do. The metaphor is often enhanced
with the addition of automobile or motorcycle engine sounds. In the reverse
direction, I recall from many years ago a series of commercials by a tire com-
pany showing a car equipped with that company’s tires streaking down the road
by means of tiger feet instead of wheels. The tires were called Tiger Paws. How’s
that for metaphor?

Putting Theory to Work

At long last, I can apply these grand theories to interactivity design. You’ll be
attempting to communicate some abstruse concepts to your user, and you’ll
often need clean ways for the user to communicate with you. You can use
metaphor to great effect here. You have two approaches: extending existing
metaphors or creating new metaphors.

The main advantage of extending existing metaphors is that the user com-
munity is already familiar with them. Since the desktop metaphor is now univer-
sally familiar, an extension to this metaphor would be immediately
understandable and quickly accepted. However, metaphor extensions suffer
from two dangers of which you must be aware.

The first is the intrinsic limitation built into the concept of a metaphor. A
metaphor is used when some features match and some features don’t match.
The creator of the metaphor must distort the expression to get around the mis-
matches. This works in narrow, constrained situations. But when you attempt to
extend a metaphor, you are trying to widen its applicability. If the metaphor was
competently designed in the first place, it may have little room for extension.
Extending a metaphor often weakens its value.

6490 AID Chapter 23  10/21/02  2:31 PM  Page 298



Metaphor 299

A second danger arises from the temptation to extrapolate rather than
extend a metaphor. A beautiful example of this problem is provided by the
attempts to create three-dimensional desktops. The original desktop design is
essentially two-dimensional in structure. We sometimes call it two-and-a-half
dimensional because windows can overlap other windows. So every extrapola-
tory fool in the industry has jumped to the simple-minded conclusion that three
dimensions are better than two and a half. They proffer “virtual offices”
through which one may walk, accessing all manner of items. The most laughable
expression of this concept is the virtual filing cabinet, which permits a $2,000
computer to lose information as quickly as a $50 filing cabinet can. Filing cabi-
nets may be familiar, but they’re also lousy ways of storing information—why do
you think that we’ve all been moving our data from filing cabinets to computers
in the first place? A virtual filing cabinet is as silly as one of the old horseless
carriages that was designed to look and act just like a horse-driven carriage,
except there were no horses. Computers allow us to organize information in so
many useful ways; why would we ever want to revert to the old and clumsy spa-
tial organization system?

All in all, I see little promise in extending existing metaphors. Perhaps in
the early years, when a metaphor is young and unfamiliar, there is some value in
extending it, but otherwise I believe that metaphor extensions are a waste of
design time.

Instead, I prefer the creation of new metaphors. A tightly focused metaphor
tailored to the precise problem at hand can frog-march your user straight to
your meaning—so long as you don’t try to squeeze too much out of it.

Metaphors are such an ubiquitous component of language that we have a
huge statistical base from which to work. Look here: most of our language’s
words are essentially metaphorical; the roots on which they are built are sensory
or motor in nature. Thus, the root word for see (Indo-European ueid, pro-
nounced like wide) gave us white, idea (can you see why?), the suffix -oid (as in tri-
anguloid), meaning “looking like,” all of the “video” words (vision, visit,
interview), witness, wit, wise, and scores of others. Every one of these disparate
words is a metaphor for seeing. Our words for mentation are all metaphorical: 

“I don’t grasp that.”

“Ya follow?”

“He sure demolished that argument.”

“You must be blind not to understand that.”

“Despite my pleas, she would not hear me.”

“I was too tired to carry the argument.”

“This discussion is over; drop it.”

“Run that by me one more time.”

“What a dimwit!”

“Her reasoning left me cold.”

“What a sharp tongue he has!”

6490 AID Chapter 23  10/21/02  2:31 PM  Page 299



300 Chapter 23

Metaphor is so common, so everyday in application, that we quickly grasp
customized metaphors: unconventional wordings that utilize novel metaphors.
One study found that the average English speaker uses a thousand such one-
shot metaphors every day. I used four metaphors in this single sentence:

A tightly focused metaphor tailored to the precise problem at hand can
frog-march your user straight to your meaning—so long as you don’t try to
squeeze too much out of it.

One of the metaphors (tailored) is conventional; a second (focused) is familiar
but not strictly conventional; a third (squeeze) is odd; and the fourth (frog-march)
is downright peculiar—but they all work.

I therefore recommend the use of verbal metaphors in interactivity design.
We already use quite a few of these: we run a program, crash the computer,
browse the web, shoot an email to somebody, and so on. The computer field has
been until recently dominated by science and engineering people (see Chapter
27), whose verbal skills typically fall short of their mathematical skills. This sug-
gests that much opportunity remains for creation of other useful metaphors.

Time for an example. What if I try my hand at email programs? Consider
attachments. Gad, what a clumsy term for including a file with a message! Some
programs attempt to communicate this with a paper clip, but that metaphor
strikes me as all wrong, because paper clips are used to join two or more sheets
of paper. I think that the term package (or perhaps parcel) communicates the
idea better. A package is a box with something inside. It usually includes a letter
explaining the contents. That’s more evocative of what we do when we send
each other files. Moreover, it makes the interaction clearer. Create a box; put
this file (and possibly more files) into the box; here’s the letter to tuck inside;
send the package.

Experienced users will object that this approach is no clearer than the con-
ventional way to attach files. But there’s a bias here: if you’ve already mastered
the conventional way, then you are not a properly naive judge of the relative val-
ues of the two approaches. The real issue is, how do the two approaches work
for raw beginners? Only field testing can decide the matter.

Here’s another possible metaphor: a secretary instead of a mailbox. My
email program allows me to sort old messages into mailboxes; I can define a
mailbox by any criteria I want and then manually assign each incoming email to
it. It can even automatically assign emails to mailboxes based on their authors.
However, in real life, we often recall old messages by a variety of criteria: con-
tent is the most important factor, but author and date are also used. Moreover,
in attempting to dig up an old email for reference, our recollection of its date
and content (and sometimes even author) are often fuzzy. Imagine the busy
executive poking her head out of the door and asking her secretary, “Tom, can
you find that letter from What’s-His-Name in Accounting about the travel
invoices? I think it was last October.” There is no mailbox system that can han-
dle this task (as far as I know), yet it constitutes a fairly simple database search
request. In other words, the problem is easily computable; our failure to solve it
arises not from technical considerations but from our working metaphor: a mail-
box. Whoever talked to a mailbox? Shift the metaphor to a secretary, and the
feature becomes obvious.

6490 AID Chapter 23  10/21/02  2:31 PM  Page 300



Metaphor 301

Another area of email software needing a new metaphor is the address
book. This is usually a list of names and addresses organized alphabetically. This
concept worked fine when we had a few dozen correspondents, but nowadays
we communicate with hundreds of different people. Address books are growing
impossibly cumbersome. (This is yet another example of how, as problems grow
in size, technology must shift gears to another approach.) We could try to
extend the address book metaphor by setting up multiple address books—one
for family, one for friends, one for colleagues at work, one for outside business
contacts, and so on—but as I have pointed out, extending metaphors seldom
works. In this case, it handles crossover cases poorly. (“Do I put Mary on the
friends or contacts list? She’s both.”) Here again, the secretary metaphor would
serve us better. Specifying “Gomer” as the recipient of the email clearly means
the guy I’ve sent dozens of emails to in the last week, not Gomer Tziginopilis in
Tahiti, and not Dr. Joseph Meningitis, the back specialist who treats me once a
year. If I want to send a message to the doctor, I’d specify the recipient as “the
back doctor.” The secretary should be smart enough to scan previous messages
for references to doctors and backs. When the secretary finds a match, it posts
the true name and email address next to my entry—as any good secretary would.
(“Tom, send this letter to the back doctor.” “Ah, yes, Dr. Meningitis.”) In other
words, the secretary metaphor converts our problem from a list selection to a
database search. Again, the crucial design act is not the technical act of creating
a database engine; those are a dime a dozen. The key lies in finding a metaphor
that suggests and supports the database search.

Another useful application of the secretary metaphor is the handling of
junk email. There are already spam filters out there, but the filter metaphor is
all wrong—too techie in style and not quite suggestive of its true function. An
email secretary might scan each incoming email for a variety of factors: Does it
come from a recognized correspondent? Does it include such words as price, buy,
opportunity, hot, and so on? Does it include URLs? The secretary could note
which emails are discarded rather than archived and use their content as models
for other emails to discard. 

Metaphor lies at the outer reaches of our understanding because it is so deeply
embedded in our thinking. I much doubt that it will ever be reduced to “engineering
practice,” but interactivity designers are only half-breed engineers; they’re also half-
breed artists.

6490 AID Chapter 23  10/21/02  2:31 PM  Page 301



6490 AID Chapter 23  10/21/02  2:31 PM  Page 302



24
A N T I C I P A T I O N

The simplest forms of interaction involve little or
no anticipation. However, as the interaction between

two agents grows more involved, each agent begins to
anticipate the other’s behavior, which in turn shapes the

overall interaction. 

Hearken back to my original definition of interactivity: a sequential process
in which two agents alternately listen, think, and speak. In particular, let’s scruti-
nize that second step: thinking. There’s an assumption hidden in there: that the
thinking agent will, as part of the thinking process, anticipate the needs, capabil-
ities, and goals of the listener in formulating her expression. In other words,
when somebody says something to us, we don’t just mouth off with the first
thing that pops into our heads; we consider the speaker’s situation in framing
our response. This process of anticipation plays a large role in mediating the
interaction. Indeed, a prime reason for interaction failure lies in erroneous
anticipations. We all know this about conversations: “I didn’t think you’d take
my criticism of your proposal so personally!” It applies just as forcefully to other
forms of interaction, and especially to human-computer interaction: “But when
it asked me if I didn’t want to save my work before quitting, I thought that Yes
meant to save it!” So let’s examine the role of anticipation more closely. 

6490 AID Chapter 24  10/21/02  1:20 PM  Page 303



304 Chapter 24

Know Thy Partner

My first observation is that anticipation requires some knowledge of the other
agent. You can’t anticipate the reactions of a completely alien interlocutor—
which is why so many people have problems with software. Designers—who
understand computers—fail to realize that their customers can’t anticipate the
computer’s behavior as readily as they can. The problem is partly diminishing as
more people become familiar with computer basics: concepts such as volatile
RAM versus nonvolatile hard-drive memory, the irreversibility of many actions,
and so forth. But computer systems are also growing more complex, creating
new anticipation problems even as older ones slowly clear up. 

This is why user interface standards are so important. Apple was way ahead
of the industry when it established and enforced user interface standards way
back in 1984. When Microsoft finally caught on and started copying those inter-
face standards, legal considerations required it to alter the appearance and func-
tion of some of the standards, much to the confusion of the users. What
Macintosh users called a scrollbar, Windows users called a slider. A Macintosh
thumb became a Windows elevator. And so on. Fortunately, the two interfaces
have slowly converged; we’ve even seen the Macintosh adopt a few elements that
arose in the Windows world. 

These standards create expectations—anticipations—for the user. For exam-
ple, we all know that an icon bar always contains the most useful commands; a
brief explanation of each command can be had by leaving the mouse stationary
over the icon button for a few seconds. We know that certain key combinations
will always accomplish the same thing: Command-Q on the Mac or Alt-Q in
Windows will generally quit a program, Command-P will print a document, and
so on. 

There is more going on here than merely speeding up the interaction by
replacing long commands with shortcut equivalents. There’s more than reduc-
ing the amount of time that the user must devote to reading the manual. We are
slowly coining a language of interaction between computer and user, a system
that sustains a variety of anticipations on the part of the user. “If I do X, my
hunch is that Y will result; let’s give it a whirl.”

Anticipation is a two-way street; if the interaction is enhanced by user antici-
pation of the computer, why can’t it be equally enhanced by computer anticipa-
tion of the user? Our present attempts in this direction are encapsulated in the
notion of “preferences.” The user tells the software in advance what her prefer-
ences are with regard to the program’s functions. However, most preference sys-
tems offer little more than customization or alteration of default settings. The
best anticipation systems we have so far are the schemes that fill in text or forms
based on recognition of heavily used strings of text. In other words, if you type
“Aunt Mary Ellen” frequently, your software recognizes the phrase after you’ve
typed “Aunt” and fills in the remainder for you. Such systems suffer from two
problems: misfires and feedback for recognition.

6490 AID Chapter 24  10/21/02  1:20 PM  Page 304



Anticipation 305

Misfires occur when the software mistakenly fills in the text string where
you don’t want it. If, for example, I am writing a letter to my Aunt Nellie, and
the computer fills in “Aunt Mary Ellen” for me, I shall be inconvenienced and
possibly irritated. Designers have experimented with a variety of solutions to
this problem. The safest—and least useful—requires the user to explicitly declare
the phrases that are to be filled in automatically. This is a cover-your-ass
solution, ensuring that the user can never feel irritated at you, even if it costs
her more time. It is rather like an old-time secretary taking dictation who
refuses to accept the boss’s informal shorthand and insists that he declare every
such contraction up front. I would expect such a secretary to be fired. 

A better approach keeps track of the user’s typing patterns, comparing
them with dictionaries of common usages. It would then fill in text strings based
on how oddly often they crop up in your typing. For example, if you are
employed by a company named Quixerixicon, and your letters frequently con-
tain references to the company, the software should recognize that name after
just four letters and fill it in for you. This concept could be extended to regular
vocabulary—if I type vocab, the only reasonable concluding phrase is ulary (yes,
there’s also the word vocabulist, but how often does that show up relative to
vocabulary?). The concept could be extended even to the level of individual let-
ters. If I type q, there’s almost certainly a u following it (assuming I’m using
English). Why not have the computer fill in that u?

The second problem is the real killer: such automatic filling in could readily
interrupt the flow of touch-typing. The mental task of touch-typing allows us to
move our spelled image of a word directly from our brains to our fingers. If we
attempt to interpose a conscious subtractive process on this, typing qick when we
mean quick, we’ll end up typing more slowly. Moreover, the disjunction between
seeing quick on the screen when we have just typed qick will surely break the
flow of our composition. This applies just as well to long phrases. If I set out to
type “Aunt Mary Ellen,” but the software fills in the remainder of the phrase for
me after I type Aunt, I will still experience a mental disjunction. 

There is no solution to this problem, but the reason why there is no solu-
tion reveals a great deal about the nature of the problem. It’s the speed of the
typing interaction that kills us; a touch-typist’s fingers move faster than his abil-
ity to process input from the computer. If the computer fills in a word for me, I
don’t realize it until my fingers have already typed four more characters, ruining
the value of the computer’s anticipation. The fill- in-the-phrase feature is thus a
boon to hunt-and-peckers and a curse to touch-typists. Thus, software in such an
application should monitor the speed of the user’s typing and fill in for him
only if he’s a slow typist.

Few human-computer interactions take place as rapidly as typing. My fin-
gers can tap out half a dozen keys in a second, each on a separate interaction.
But all other tasks (clicking buttons, scrolling windows, selecting items from
menus) take place at a much slower pace. Such tasks could more readily benefit
from detailed anticipation. 

6490 AID Chapter 24  10/21/02  1:20 PM  Page 305



306 Chapter 24

Designer-Level Anticipation

There’s another angle on anticipation in interactivity design: the anticipation
that the designer brings to the process. There’s precious little of this much-
needed behavior in the design of software. When examining software, I often
wonder, what were the designers thinking that the user would think? Were there
any anticipations going on in their heads? 

For example, I recently came across a blooper on eBay. I mistakenly entered
a password that I use for another situation. The response presented to me was
that either my username or my password was incorrect. Now what did the
designers think this message would engender in my mind? They deliberately
foisted an ambiguous situation on me; was it my username or my password that
was wrong? Didn’t they think it would confuse me? I ended up trying half a
dozen combinations of username and password, trying to figure out the prob-
lem. Their defense, of course, is that when a user submits a username with a
password, it’s the pairing that is evaluated; the username cannot be separated
from the password, and so a failure must include both parts. While they are
technically correct, the designers should have given some weight to the confu-
sion their message was certain to engender. It would have been more useful to
evaluate the username first; if the username is valid for eBay, they should have
responded with something like this:

The username chris_the_schmuck is a valid username, but the password you entered
doesn’t match that username. If chris_the_schmuck is your correct username, please reen-
ter your password; otherwise, enter the correct username with the password.

If, on the other hand, the username didn’t match any of the usernames on
file, then eBay should have responded with:

We don’t know who chris_the_shmuk is; perhaps you have mistyped your username. We
suggest that you reenter the username with your password.

This approach clearly identifies the problem and immediately eliminates all
possibility of confusion on the part of the user. 

Another example of poor designer anticipation is the all-too-common
practice of dumping overly technical explanations onto the user. For example,
I have seen some programs that advise a user of a problem by notifying him that
“the buffer is full.” What could a designer possibly be thinking when including
such a notification? What will a user think when confronted by such a blatant
use of technical terminology?

Variations on Anticipation

General anticipation involves what the computer should know about everybody;
personal anticipation uses what the computer knows about the individual user.
General anticipation should be built right into the software and so should sel-
dom be noticed—it’s automatic, after all, and it makes perfect sense. We notice it
only in its prominent absence. For example, it took the geniuses at Microsoft

6490 AID Chapter 24  10/21/02  1:20 PM  Page 306



Anticipation 307

and Netscape several years to figure out that most people use web browsers to
browse the web. If you’re browsing the Web, you always use the URL prefix
http:\\www. Yet they required millions of us to type those meaningless charac-
ters over and over again, because they just didn’t anticipate that people would
use their web browsers to browse the web. They finally realized what people
were up to and dumped the required prefix characters. They’ve learned their
lesson well; nowadays, browsers even recognize previously used URLs and
provide auto-entry options.

Personal anticipation must be figured out from interaction with the user. As
I wrote earlier, most designers require the user to take the initiative and declare
her preferences up front. This suffers from the problem that the user often
doesn’t know what components of the software can be personalized. On the
Macintosh, for example, many people still don’t realize that they can substitute
custom icons for their files and folders. The means of doing so is not at all obvi-
ous. Only the observation that other people do so has prompted them to
inquire into the trick.

A truly idiotic solution to this problem is the “startup wizard” who quizzes
the user when the program is first launched, asking for all sorts of detailed
information that the software uses to custom tailor the software. The problem
with this approach is that, all too often, personal preferences can’t be developed
until after you’ve had the opportunity to use the software. By that time, the
startup wizard is gone, and there’s no way to figure out how to get him back. If
you use a startup wizard in your design, make sure that you tell the user how to
bring him back without reinitializing the whole program.

The biggest hurdle we must overcome with anticipation is our pantywaist
fear of relying on less-than- ironclad means of anticipating the user’s desires. A
great Macintosh example of this problem arises from the dialog box we must
deal with every single time we issue a Print command. This dialog box allows
the user to fill in all sorts of interesting variations on the central theme of print-
ing the document: Do you want it sideways? Do you want to print all the docu-
ment or some of it? How many copies would you like? The vast majority of Print
commands issued by the vast majority of users require no such special decision
making: we want one copy of our entire document printed right-side up. Yet
think of the millions of users who, over the past 15 years, have had to wait the
extra second or two to dismiss that useless dialog box to get their document.
The time that they have lost dealing with an irrelevant dialog box certainly
exceeds by a great margin the time that they would have gained by separately
invoking the dialog box before printing. And the solution to this problem is so
trivial that I still can’t understand why something like this has not become uni-
versal: Command-P to print, Shift-Command-P to print with the dialog box
showing up first. 

Anticipation is almost always accompanied by uncertainty. We need to use
probabilistic thinking in our designs. How likely is the most likely outcome of
any choice offered the user? If an outcome is overwhelmingly likely, then it
should happen without requesting confirmation from the user. Think of the
computer as an assistant to a human. If you told your Man Friday, “File this con-
tract,” and all contracts have always been filed in the brown filing cabinet under

6490 AID Chapter 24  10/21/02  1:20 PM  Page 307



308 Chapter 24

the label “Contracts,” would he ask you where to file it? What would you think
of him if he did ask you? You’d call him a ninny—yet this is what software design-
ers do all the time. So, are software designers ninnies?

There really isn’t much work required to implement probabilistic anticipation.
Your software provides the user with lots of choices. Examine each choice criti-
cally, asking how often you would expect it to result in a known outcome. Or how
often a particular user would make the same choice in the same way. If you find
that there is a clear preference for one of the choices, then you should consider
making that choice for the user, automatically. In your preferences file, store a
record for that choice indicating how many times the user has indeed taken
Choice A, Choice B, Choice C, and so on. When one of those choices establishes
a clear preponderance over the others, then make the choice automatically. 

By doing so, you guarantee that most of the time your software will make
the right choice and save the user some time. You also guarantee that your soft-
ware will sometimes make the wrong choice and inconvenience your user. The
ratio of the convenience benefit of a correct decision to the inconvenience
incurred by an incorrect decision determines what you mean by preponderance in
your decision to make a choice. If you are writing targeting software for nuclear
warheads, the inconvenience of an incorrect decision is quite high, so that pre-
ponderance means always. But if you’re considering a less ominous decision, you
can lower the implied value of preponderance.

Your next step is to reduce the inconvenience imposed by a mistaken deci-
sion. The user needs to be made immediately aware of the decision and needs a
quick way to countermand it. The latter task is trivial: implement the undo fea-
ture for the decision. Every automatically made probabilistic decision must be
undoable! Making the user aware of the automatic decision is the tough task. If
the decision entails a time-consuming task, then all you need do is post a win-
dow declaring that you are now executing some task and that the user can coun-
termand the task by pressing a special key. If the decision immediately leads to
other activity, then you have to be careful; you don’t want the user to charge for-
ward ignorant of the fact that you just made a decision for him, but you also
don’t want to force the user to explicitly approve of your decision—that ruins the
whole point of the feature!

Once again, recourse to human experience provides an answer. Consider
the protocols that have evolved for teams of people simultaneously carrying out
complex tasks under the integrating control of a leader. Typically, each team
member will call out her actions as she performs them, using a standard, con-
cise phrasing. Team members are taught how to “leave the mike open” while
still reporting vital information as it arrives. Such protocols are almost always
carried out via the sound channel. because it can be shared by all and because it
allows workers to keep their hands and their eyes on their primary tasks. 

Our problem therefore calls for speech synthesis or pre-recorded voice.
When the user chooses the Print option, the computer calls out “normal print-
ing” and continues. The key to the solution lies in finding a quick back-channel
way to represent the decision automatically made.

6490 AID Chapter 24  10/21/02  1:20 PM  Page 308



Anticipation 309

Levels of Anticipation

The zeroth level of anticipation is the null level: no anticipation at all. This was
where we were back in the old DOS days. A computer was a machine, and your
job was to push the right buttons. Nowadays, computers have moved up to the
first level of anticipation: to some extent, they take the human condition into
account as they function. Clearly, our immediate task is to expand the degree of
such anticipation until computers operate with a reasonable understanding of
the human context in which they work.

But there are further levels of anticipation: second, third, fourth,
umpteenth levels of anticipation. It’s easier to understand in human terms:
Fredegund uses zeroth-level anticipation when he bluntly tells Gomer that he
has been terminated; Fredegund isn’t considering Gomer’s likely reaction at all.
Fredegund uses first-level anticipation when he gently couches the news in
terms meant to salve Gomer’s feelings. Fredegund uses second-level anticipation
when he considers how he (Fredegund) might respond to his (Gomer’s) answers
to his (Fredegund’s) questions. “After I tell him the bad news, he’ll probably ask
whether his performance had anything to do with the decision to let him go; if I
answer yes, how will he respond?” (Side note: Psychologists use intentionality to
describe what I am here calling anticipation.)

In second-level anticipation, we look ahead a step before we make our deci-
sion. If I do X, then the other guy will likely do Y, which will force me to do Z,
so do I really want to do X in the first place?

Your biggest problem in using anticipation in software design is your expo-
sure to blame. If your software insists on pig-headedly covering its ass at every
turn, nobody can ever blame you for screwing up. When you anticipate the
user’s wishes, rather than requiring him to explicitly declare them, you perform
a useful service at a small risk of being wrong. Good workers do this all the
time, and when they do get it wrong, they apologize and recover. Shouldn’t your
software do the same?

Privacy

Anticipation requires knowledge of the other party; better anticipation requires
more such knowledge. Thus, to really apply anticipation usefully, your software
needs to know as much about its user as it can. Our current knowledge about
our user is stored in a Preferences file; each application maintains one or more
of these. The Preferences folder on my Macintosh contains 855 files amounting
to 42 MB of hard disk space. Once again, we face the old problem of a good
idea that has been outgrown. We need something better.

The seeds of a better solution are already in place. My Macintosh knows my
name; when I install a new program that wants to know my name, it can find it
automatically. Why stop with a name? Why not include address, telephone num-
ber, social security number, and shoe size in the standard user data file? Why
not include our credit card numbers so that we don’t have to run for our wallet
every time we buy something online? 

6490 AID Chapter 24  10/21/02  1:20 PM  Page 309



310 Chapter 24

I don’t stop there. Our software should compile every useful bit of informa-
tion it can about us: our habits, our spelling oddities, and our email correspon-
dents. The accumulation of this kind of data can dramatically enhance the
performance of our personal computer software. The spam-killer software that I
mentioned earlier would operate by noting which emails we trash without read-
ing, looking for patterns in their content that are unique to such emails. Once it
has reached an appropriate level of statistical certainty, it can start throwing out
the worst examples automatically—leaving the questionable ones for us to exam-
ine. But this works only with an existing compendium of data on our past behav-
ior. The smart address book that I mentioned in the same context would also
require considerable background information on its user. To identify “the email
from What’s-His-Name in Accounting about the travel invoices that was sent last
October” will require a vast amount of information—but it is all information that
at some time has resided in the computer and could be put to productive use.

One might object that such information storage would gobble up too much
disk space for its overall utility; and were we still using 1 GB hard drives, I would
agree. But inasmuch as hard drives are now operating in the 20 GB range, I
don’t see a problem. Similarly, the digestion of all that data should not be oner-
ous; most computers waste literally trillions of machine cycles every day. Why
not put some of those cycles to use in background work?

This gets us into the swamp of issues surrounding privacy. We have all
heard the terrifying stories about how easily our privacy can be breached by
unscrupulous scoundrels on the Internet. We all agree that privacy is a good
thing that should be protected. Nevertheless, I argue that there are good and
valid reasons to compromise the privacy of the user. I do not argue for the
reduction of privacy on the Internet; my goal is to point out the magnitude of
the dilemma. 

For most software designers, this matters little; the sensitive information is
safely confined within the bounds of the computer, and the user need not fear
its divulgence. But the Internet changes things. Website designers in particular
face sensitive issues in doing their jobs well. Much of the information that other
programs squirrel away on a user’s hard drive must move over open telephone
lines and be saved inside the host computer. There goes privacy.

I will use Amazon.com, one of the better-designed sites, as an example of
how tricky privacy issues can be. The designers of this site have worked hard to
make it intelligently helpful. With my permission, they have stored my basic pur-
chase information (shipping address, credit card number, telephone number) in
their computer; when I order a book, I need not endure the tedium of reenter-
ing this information, nor the risk of retransmitting it across the net. I have sur-
rendered a considerable amount of privacy, but it seems a good trade-off to me. 

But they don’t stop there. They keep a record of my purchases and have
built up a profile of my buying tastes in books. They use this profile to suggest
new books for my consideration. It’s a good idea, but what if my tastes ran to
child pornography? How would I feel knowing that they have a file on me
revealing my sick tastes? For the moment, my only fear is that someday some
snoop will uncover my eccentric interest in Desiderius Erasmus—and what if
someday my penchant for Erasmus becomes a crime?

6490 AID Chapter 24  10/21/02  1:20 PM  Page 310



Anticipation 311

Amazon.com could do a better job by logging my browsing as well. The
searches I make, the books I look at, all provide even more information about
my purchasing tastes, even if I don’t proceed to make the purchase. This would
require more intelligent algorithms, of course, but with the amount of data gen-
erated on the site every day, the designers would be professionally remiss not to
utilize that data. This would give them an even more refined basis for recom-
mending books.

But why stop there? Once they’ve mastered the on-site data, couldn’t they
do an even better job for me by considering data from other sources on the
Web? They could estimate my disposable income by consulting publicly available
information on my tax assessments; this might help them tailor the ideal price
range for my purchases. They could swap data with other retailers to divine my
other interests; since I’ve been buying electronics parts recently, perhaps I would
be interested in a book or two about charge-coupled devices or universal asyn-
chronous receiver-transmitters?

But a designer truly determined to do the best possible job for me would go
even further: when I log on, the site would download software to my machine
that would scan the contents of my hard drive to assess my interests. Here’s an
email talking about installing a hard drive; perhaps a book on upgrading com-
puters would be nice. There’s a spreadsheet with weather data; surely a book on
weather measurement with computers would be interesting. 

As far as I know, nobody has gone this far yet, and I doubt that anybody will
soon develop software intelligent enough to analyze this data adequately. The
important point, though, is that all of this conjectured activity is a perfectly rea-
sonable application of a genuine desire to help the user. There’s nothing malev-
olent in this breach of privacy. The effect of all of this intrusion is to create a
private bookseller for the consumer:

“Good evening, Mr. Crawford. May I take your coat? How is your cat
Khublai recovering from that abscess? I take it you’re in a rather jubilant mood
after receiving that royalty check? Perhaps you’d like to splurge on that 1532 edi-
tion of the Colloquies you’ve been eyeing. . . . Not yet? Very well, I’ve found an
interesting work on language origins. It’s a tad expensive but has some fascinat-
ing new theories. Something else? Did you know that Richard Dawkins has a
new book out? Why yes, here’s all the information on it. . . .”

Wouldn’t that be nice? And who could be more discreet than a well-pro-
grammed computer? I’d be uncomfortable knowing that a human bookseller
has such an intimate knowledge of my life, but a computer, being a machine,
would make no judgments and tell no tales . . .

. . . unless something went wrong. Between greedy businesspeople and out-
right criminal hackers, there’s plenty of reason for concern. All that personal
information would not be truly secure—so some people have concluded that we
should not allow it out of the barn in the first place. Perhaps this is the most
prudent course for the moment. But the integration of information via net-
works is progressing with amazing speed. We have already placed most office
workers permanently on a LAN, which is in turn connected to the Internet; the
office worker who needs to look up a quick statistic can set aside the spread-
sheet for a moment to grab the relevant page from the web. The personal

6490 AID Chapter 24  10/21/02  1:20 PM  Page 311



312 Chapter 24

finance program Quicken already permits users to log onto their site to obtain
financial information for the program automatically. The benefits of integrating
one’s personal computer into the Internet are too great; more and more soft-
ware will plug into the net to enhance its performance. As this trend grows,
more and more interactivity designers will be caught between the desire to bet-
ter serve the customer and the need to protect the customer’s privacy. It is in
the best interests of interactivity designers to support the development of strong
privacy laws that protect users while permitting legitimate access to detailed per-
sonal information.

6490 AID Chapter 24  10/21/02  1:20 PM  Page 312



PART FOUR
SOCIAL AND ARTISTIC ISSUES

6490 AID Chapter 25  10/21/02  1:22 PM  Page 313



6490 AID Chapter 25  10/21/02  1:22 PM  Page 314



25
A  H I S T O R Y  O F  I N T E R A C T I V I T Y

Presenting a cute tale sketching the difference between
mass media and interactivity. No apologies are offered

for the attempted humor. 

It all started long, long ago, before DOS, before television, before cave-
men. Mother Nature was screwing around with a new kind of critter, the mam-
mal, and the basic design looked pretty versatile. On a whim, she tried giving
some of the mammals bigger brains for more intelligence, and lo and behold, it
worked! Critters with bigger brains seemed to do better. 

But at a certain point the brains got so big that a problem emerged: what
do you put in those brains? Mother Nature had gotten pretty handy at cooking
up nervous systems that could detect, analyze, and respond to all manner of
complicated environmental situations. Herbivore brains could combine sensory
information from ears and eyes to detect approaching predators, analyze their
motions, and plot the best routes of escape. Later, she concocted some snazzy
evasion algorithms that permitted prey to zig and zag with just the right timing
to throw off closely pursuing predators. But these were all hard-wired into the
synapses; the critical information about how to do these things was encoded in
the DNA, and the critter was born with the ability. 

The bigger brains she was experimenting with were capable of all sorts of
snazzy calculations. But bigger brains need more data, and that’s what raised the
problem. She was getting tired of hand coding the DNA with all those compli-
cated neural algorithms. More important, she realized that she couldn’t keep

6490 AID Chapter 25  10/21/02  1:22 PM  Page 315



316 Chapter 25

going this way forever; eventually she’d run out of DNA for all those algorithms,
and the new 256-MB DRAM modules were a long way off. She fiddled around
aimlessly for a few eons, trying various combinations, none of which seemed to
work. Then she stumbled onto the solution with one of the minor orders, felix—
that’s the cats. The big idea was this: Don’t bother programming the brain with
all the behavioral techniques and algorithms. Instead, program the brain with
the basics (eating, drinking, sleeping, walking—that kind of thing), and then add
a special behavior whose function is to learn new behaviors. A behavior to learn
behaviors—what a concept!

This raised a new problem: How could Mother Nature design such a behav-
ior? How do you program critters to learn about their environment? A few mil-
lion dead mammals quickly demonstrated that any explicit-learning system was
just too vulnerable to minor problems. Every little programming bug crashed
the species. She needed something that was robust, that would work in all kinds
of different situations. 

“Why not let them do it the same way I do it?” she mused. After all, she’d
had a lot of fun playing with genes, trying out all sorts of combinations and vari-
ations, and every now and then she hit upon a recipe that worked. Sharks were
one of her early successes. What an elegant design: clean, simple, and wonder-
fully efficient! She was proud of that one. On the other hand, she never could
seem to get beetles right. She’d pulled out all the stops with them, trying all
sorts of different schemes, but none of them quite rang the bell for her.

To get back to the story, she figured that she’d let her new “learning mam-
mals” learn about their environment the same way that she learned about
species: by playing. Of course, she played with genes, and they’d be playing with
synapses, but that was only a matter of timing and generality. Her experiments
took eons and affected millions of critters; these experiments—games—would
take minutes and affect only the player. 

So that was her plan: equip the learning mammal with a basic drive to try
out all sorts of crazy behaviors (we now call it curiosity) and some sort of mecha-
nism for noticing the results and remembering successful experiments. The
remembering part was easy, and the random behavior generator was also pretty
simple, but she soon realized that she needed to put a terminating gene in
there; the damned silly adults were still playing games, getting themselves killed
jumping out of trees, attempting to mate with predators, trying to swim across
the ocean, that kind of thing. With that bug fixed, she had kittens that would
play, but the evaluation algorithm was always a problem. It worked, but it was
accident prone, and try as she may, she just couldn’t get it working safely.
Eventually she decided to call it a feature.

The cats worked out just great. When they were young, they were too small and
weak to do anything worthwhile; they needed a few months to grow big enough to
bring down a full-sized mouse. During that period of kittenhood, they would play
with each other, trying out all kinds of stalking, pouncing, and fighting techniques.

These kittens were so successful, they even got around one of Mother
Nature’s biggest belly-flops: she had placed the most vulnerable part of the
body, the eyes, right next to the primary killing weapon, the teeth. Before you
can eat a mouse, you’ve got to kill it, and if you’re going to kill it, you’ve got to
bite it, and in the process, you’re bringing your eyes within easy striking dis-

6490 AID Chapter 25  10/21/02  1:22 PM  Page 316



A History of Interactivity 317

tance of a mouse’s feet. All predators suffer from this problem. Mother Nature
had tried to get around it in a variety of ways. She had moved the eyes all
around the head,  but some of those poor critters were walking into trees. She
tried giving them  big teeth, so they could kill in one quick bite, but then they
had horrible dental problems. She tried making the predators so much bigger
than the prey that they could get the whole prey inside the mouth in one gulp,
but that required  big predators nibbling like crazy.

But these clever little kittens solved the problem in a way she had never
thought of. By practicing the whole stalk-pounce-bite-kill routine over and over
again, they were able to polish it to perfection. They didn’t change any of the
techniques; they just reduced the error rate by endless practice, practice, prac-
tice. With that kind of quality control, they were able to take on prey not much
smaller than themselves—quite a feast when it worked. And they didn’t need to
pack big-caliber teeth to do the job, either. These new smart mammals that
could learn were quite a discovery, and she decided then and there to include
this new learning-by-playing feature in many of her new models.

So Mother Nature played around with the formula. She tried a slightly differ-
ent tack with the canids (dogs), emphasizing teamwork rather than quality control,
and that worked pretty well. She tried all sorts of other experiments I won’t go into
now, but in one of her wilder moments, almost a fluke, she tried raising the ante
by cooking up a critter with a  big brain. It was ugly as sin: the skull had to bulge
out like a gorged tick to hold all those brains, and the whole body was thrown out
of balance by that monster head. When it ran, the poor thing’s heavy head
bounced around crazily, throwing the body this way and that, and all four legs
would scrabble around trying to keep everything moving along. What a pathetic
sight! She decided to tuck these losers into a small corner of the world while she
went back to other, more promising experiments with dolphins and pigs.

But then there was an accident. A fairly sizable group of these pathetic nin-
nies managed to get themselves cut off from the main group when a tectonic plate
shifted suddenly and dropped a strip of continent below sea level. All of a sudden,
these monkeys were marooned on a big desolate island, surrounded by a shallow
sea. Here’s where that playfulness paid off: some of them went into the water to
gather oysters and other shallow-water food. With their weight partially supported
by the water, their ungainly bodies weren’t such a handicap. They shifted from
quadripedalism (four-legged walking) to bipedalism (two-legged walking).

I think you can see where this story is going. Rather than bore you with the
details, I’ll just wrap up this part with a quick “...and the rest is history.”

One of the other themes that Mother Nature had been experimenting with
was social behavior. The mammals were smart enough to permit some simple
social behaviors, and she had found these to be quite useful in coping with a vari-
ety of problems. She kept refining her techniques, adding more and more social
behaviors as she built bigger and bigger brains. She was having quite a bit of fun
using the idea on primates, and of course the new hominids boasted lots of social
behavior. But then she noticed that the hominids, equipped with scads of social-
behavior genes, were starting to get themselves mixed up in  messy and confusing
interactions. It seems that Mother Nature had designed all the social behavior
algorithms to handle what she called radial interactions. Each creature stood in
the center of his own psychological universe, and all other creatures were scat-

6490 AID Chapter 25  10/21/02  1:22 PM  Page 317



318 Chapter 25

tered around it, some psychologically nearer and some further. Thus, each crea-
ture saw all social relationships in radial form: what do I care about this situation?

However, the new hominids were so intensely social that other kinds of rela-
tionships were taking on real significance to their behavior. Expanding on some
ape behavior, they had developed gender-based specialization, with the females
and children remaining in a relatively immobile central location, and the males
looping outward on long hunts. This admirable food-gathering scheme ran
afoul of their sexual algorithms: How was a male to have enough confidence in
the paternity of his children to expend all the energy to feed them? He could
never know what his mate might be doing in his absence. 

At first Mother Nature treated this as a radial problem, trying to come up
with ways to guarantee the paternity of every child, but every approach she tried
proved to be buggy. But then she had a stroke of genius: what if she approached
it as a three-party problem: male, female, and back-door male? This opened up
all sorts of possibilities, because behaviors encompassing three parties can be
extended to cover the entire clan. If these hominids could be made to under-
stand the concept of a love triangle, could they not just as easily understand the
concept of a “tri”-bunal: judge, plaintiff, and defendant? Or an alliance? This
new concept bubbled over with possibilities. Recalling her earlier geometric
notion of radial relationships, she dubbed these circumferential relationships:
every individual remains at the center of his own psychological universe, but
must now consider the relations between others, relationships around the cir-
cumference of the circle of his friends and family.

Humming happily to herself, Mother Nature set to work endowing her
hominids with the algorithms necessary to evaluate circumferential relation-
ships. After but a few minutes’ work, she realized that this was harder to pro-
gram than she had imagined. The radial relationships, involving only one
outside party to consider, were fairly easy to define and address with simple
emotions such as fear, affection, dominance, and so forth. But these circumfer-
ential relationships could combine in a dizzying number of ways; there were just
too many to program an algorithm for each and every combination.

Mother Nature struggled with the problem late into the night, trying to
solve the problem, but made no progress for hours. Just after midnight, she had
a brilliant brainstorm. What if she simply reused all the existing radial algo-
rithms, but applied them with variable subjects? In other words, all the algo-
rithms that she had developed for, say, fear/dominance/intimidation in the
radial form could be used circumferentially if she simply substituted another
person in them. The original algorithms always assumed the thinker to be the
subject (for example, “I am intimidated by his chest thumping”); she need
merely plug in the ability to substitute another person in the subject position:
“She is intimidated by his chest thumping.”

This was a fantastic concept; her excitement grew despite her fatigue. If she
could equip hominids with the ability to substitute another person in the subject
position, the same trick could be used to substitute the original person in the
direct object position: “She is intimidated by my chest thumping.”

Mother Nature soon realized that there were two necessary extensions to
the existing programming. First was the aforementioned ability to substitute
another person in the algorithm, and second was the ability to recurse this

6490 AID Chapter 25  10/21/02  1:22 PM  Page 318



A History of Interactivity 319

thinking, to apply one layer of algorithm inside another layer. This allowed such
thoughts as, “If I thump my chest, then she will be intimidated by my chest
thumping, and she will attempt to mollify me, and she will give me her banana.”

By this time, Mother Nature was bleary eyed and yawning, but there was
one last detail to sort out: how to continue using the original algorithms for
their original purpose, radial relationships? The answer seemed obvious: equip
each hominid with an indirect means of referring to itself, the pronoun I for the
preceding sentences. She set it all up with her hominids and then, exhausted,
retired for the night. 

The next morning, after tea, she returned to the lab to see how these new
circumferentially adept hominids were doing. A single glance made her recoil in
horror; the teacup fell from her hand and crashed on the floor. During the
night, the hominids had developed consciousness! “Oh, shit!” she cried. “What
hath I wrought?” Instantly she saw her mistake: that little pronoun I, that new
variable that she had used to generalize her algorithms, had planted the seed.
The hominid brains had developed that nascent ego and grown it into full-scale
consciousness. It must have been the language feature that made it happen so
fast. Once the seed of ego had been planted, the hominids plugged it into their
primitive language systems, and then they started talking about themselves,
accelerating the process! 

She stared in wide-eyed horror at her mistake. Then she paced for hours, try-
ing to figure out what to do. Despairing of a solution, she called an old friend.

“B.L., I’ve got a big problem.” She explained the sequence of events.
B.L. couldn’t resist a hearty laugh at her expense. “You really did it this

time, didn’t you?”
“C’mon, B.L., this is serious! I’ve got to do something! Help me out here!”
“You don’t have a whole lot of options, M.N. You know what’s going to hap-

pen next, don’t you?”
“Of course: the little buggers are going to take over the world and wipe out

everything else.”
“Well, then, it seems to me that you have only one choice: reformat the

whole thing.”
“But B.L., I’ve got so much work in it. I can’t just wipe it all out.”
“Look, M.N., there’s no stopping one of these infections once it gets

started. You know that.”
“But couldn’t I just use an anticonsciousness checking program?”
“Sure, but those things seldom work; the little monsters just build boats.”
Mother Nature sighed. “Okay, thanks for your help, B.L.”
“What are you going to do?”
“I don’t know. I’ll think on it.”
“Don’t wait too long. Those buggers move pretty fast.”
“I won’t. Bye.”
She couldn’t bring herself to destroy the entire genome; there were too

many good ideas in it, especially that learning-by-playing discovery. Perhaps, she
mused, they’ll never become too destructive. After all, it’s the females who con-
centrate on the interpersonal relationships; they’ll end up with the most highly
developed consciousnesses, but the males are the ones who run the show.
Perhaps the big lugs won’t be bright enough to do much harm. I should at least

6490 AID Chapter 25  10/21/02  1:22 PM  Page 319



320 Chapter 25

give them a chance. I won’t use the anticonsciousness program until they show
unambiguous signs of developing civilization. She sat back to watch her little
experiment take shape.

Meanwhile, Back on the Earth . . .

One fateful day, a Cro-Magnon named Gorkimedes found some red berries
growing on the hillside. He ate them and then got  sick. After throwing up the
already paltry contents of his stomach, he headed down to the group’s encamp-
ment for sympathy and some water to wash the taste of vomit out of his mouth.
On his way down, he resolved to warn his compatriots not to eat the red berries.
But as he walked into camp, he realized that almost everybody was there, and
he’d have to thread his way through all 37 people, telling them one at a time
about the red berries. Discouraged by the prospect, he slumped his shoulders
and glanced away. His eye fell on a big flat-topped boulder. And that’s when
Gorkimedes invented mass media.

He climbed up on the boulder and began shouting to his friends and family,
“Everybody gather round! Come listen to what I have to say!” Well, at first they
all just stared at this maniac standing on a rock shouting, but pretty soon a few of
the younger ones went over, and when the adults realized that Gorkimedes
wasn’t insane, they came, too. Standing up on that boulder, Gorkimedes could
easily see all 37 members of the tribe, and they could all see him. “Listen up!” he
announced. “Don’t eat the red berries! They’ll make you sick!”

“That’s not true!” his uncle Gorkistotle shouted back. “I was eating some
red berries down by the stream not 10 minutes ago, and I feel fine!”

“You mean those little hard orange-red berries that grow on the thornless
bush?” Gorkimedes asked.

“Yep, they’re the ones,” came the reply.
“Well there you have it,” Gorkimedes declared. “I’m talking about the big

squooshy berries, deep red, that grow on the thorny bush on the hillside!”
And that’s how mass media was invented. As he stepped down off the boul-

der, Gorkimedes exulted to his father, “Give me a place to stand, and I will tell
the whole world!”

Everybody was terribly excited by Gorkimedes’ discovery, because it dramat-
ically increased the efficiency of language. With old, obsolete solid-ground tech-
nology, you could talk to only a handful of people at a time, but rock technology
permitted a speaker to address 20, 50, maybe even 100 people at once. That was
astoundingly efficient—and adding more people to the audience didn’t cost a
clam! This was itself revolutionary.  

The first breakthrough in rock technology was the discovery of bigger
rocks. From a bigger rock, a speaker could be seen and heard by even more
people. Soon, speakers were addressing 100, 200, even 300 people from ever-
bigger rocks. 

The next step took tens of thousands of years, but it was a big one: the arti-
ficial rock. By piling bricks or cut stones on top of each other in big mounds,
people were able to build platforms on which to stand, platforms high enough
to permit one person to address hundreds easily. Mankind marched forward!

6490 AID Chapter 25  10/21/02  1:22 PM  Page 320



A History of Interactivity 321

The Greeks came up with the next big improvement: the amphitheater.
Basically, this is a rock turned inside out. The audience sits on the sides of a
small valley, and the speaker stands in the middle of the valley, surrounded by
people looking down on him. Because the slopes of the amphitheater are
curved, more people can see and hear the speaker. Even more efficient!
Progress progressed!

The Romans took the amphitheater to its ultimate form in the Coliseum. This
was a huge artificial amphitheater, a bowl for people to sit in. They could pack
thousands of people into the Coliseum, and one person standing in the center of
the Coliseum could be heard by everybody, if they all kept absolutely quiet.
Unfortunately, the Coliseum bumps up against the upper limit of capability of rock
technology. That limit came not from the technology but from the human voice,
which can get only so loud. It looked as if the March of Progress was pooped.

But there was already another solution ready to go: writing. It had been
invented much earlier by Mesopotamian accountants to keep track of goods. I’m
not kidding! The  first written documents in human history were receipts for
goats, sheep, and wheat. Later, the priests caught onto the secret, but writing
didn’t catch on until much later, when the Greeks managed to put all the pieces
together. They swiped paper from the Egyptians and the alphabet from the
Phoenicians and added one element all their own: the expectation that every-
body should be able to read and write. Of course, “everybody” in those days
didn’t really mean everybody; after all, slaves, women, children, and foreigners
didn’t count. But if you were a man of substance, a participating member of the
community, you were expected to be able to read and write.

What a difference that made! Suddenly, with a broad spectrum of people
involved in reading and writing, the subjects of writing exploded out from the
dull bills of lading, royal chest thumping, and temple hocus-pocus that domi-
nated other people’s writing. (Can you imagine reading that dreck for a living?
Gad, it would be worse than programming financial databases for banks! Let’s
pause for a moment of silence to honor the archaeologists who patiently read
through reams of this stuff trying to figure out what those people were up to.)
But the Greeks started writing to each other about anything they felt like: family
gossip, political diatribes, business advice, anything. And that in turn led to
something altogether new: the realization that deliberately written things—
books—could be passed from hand to hand, copied, and thereby spread to many
people. At any given time, only one person could be reading a particular copy,
but as the years rolled by, the audience for a book could get up into the thou-
sands. Moreover, you didn’t need to gather everybody together into a single loca-
tion to get your information across to the multitudes. Copies of your book could
travel all over the world, reaching people in distant lands without your ever even
lacing your sandals. This was high tech! Once again, humanity lurched forward
with the impetus of a new and more efficient way to disseminate information. 

The pace of innovation was accelerating: a mere 2,000 years later,
Gutenberg invented the printing press, and suddenly it was possible to make
thousands of copies of a single book. It was so easy that printers could make
money selling books for a pittance (at least, a pittance to your average upper-
class oppressor of the people). More books were printed, which encouraged

6490 AID Chapter 25  10/21/02  1:22 PM  Page 321



322 Chapter 25

more people to learn to read, which made the customer base even larger—things
just took off. The efficiency of communications took another giant step forward.
Then came movies, radio, and television, which permitted a single person to
communicate useful (and useless) ideas to millions of people at once. The effi-
ciency of human communication now stands at dizzying levels of achievement.
Let’s all give ourselves a great big congratulatory hug.

But there’s a catch. Along the way to greater and greater efficiency, we cut
out all the interactivity. Language, in its original form, was highly interactive
because it was mostly conversational—and remember, I used conversation as the
defining metaphor for interactivity. Now recall Gorkimedes’ warning about the
red berries. His uncle Gorkistotle was able to interrupt him with an objection.
There followed a public conversation between Gorkimedes and Gorkistotle,
which was certainly interactive. But other parts of Gorkimedes’ speech were not
interactive. Hence, the total interactivity of Gorkimedes’ warning was less than
what people normally achieved in conversations. 

It got worse as the rocks got bigger. Try to interrupt a speaker addressing a
hundred people, and the speaker and the audience will likely show some irrita-
tion. With amphitheaters, the problem grew even worse, because there were even
more people in the audience, and the social pressure to shut up was overwhelm-
ing. I very much doubt that any of the gala events staged at the Coliseum were
even moderately interactive, except, of course, for the interactions between the
Christians and the lions, but then they were the entertainment, not the audience. 

With the printing press, we eliminated once and for all the theoretical possi-
bility of interaction. At least at the Coliseum, a spectator in the farthest bleach-
ers could feasibly shout, “Hey Caligula, when you gonna fix the potholes in the
streets?” and although we can be reasonably certain that nothing of the kind
ever actually happened, it was at least theoretically possible. But with the print-
ing press, we dismissed even the possibility. Still, people tried to interact. Lots of
people wrote letters to the authors of books (they still do today, but back then it
was a bigger portion of the audience that wrote). There were “dueling pam-
phlets,” ugly arguments carried out through the printing press. But the degree
of interactivity was vastly reduced.

Look at the situation today. If the president of the United States comes on
television to announce some important new decision, you don’t stand a snow-
ball’s chance in hell of interacting with him. You could try writing him a letter,
but you know it’ll be read by some White House intern. Most people just give up
and make raspberries at the TV screen.

Thus, as the efficiency of our communications has increased, the interactivity
associated with those communications has been reduced to zero. And that’s why, when
you mention interactivity, traditional communications designers blink and say
“Huh?”

6490 AID Chapter 25  10/21/02  1:22 PM  Page 322



26
C O N T R O L  V E R S U S

I N T E R A C T I V I T Y

In this chapter, I’ll be talking about interactivity, plot,
free will, determinism, quantum mechanics, and tem-

poral irreversibility. Yes, believe it or not, these six things
are all tied together. Moreover, they’re tied together in a way

that reveals some useful truths about designing interactive applica-
tions. Although the vehicle of discussion is interactive storytelling,
the lessons of this chapter can be applied to any interactive design.

The starting point of the discussion is the conflict between plot and interac-
tivity. There are theoretical reasons for this conflict, best seen from the point of
view of the plot faction, most of whom are writers. Plot creation is, from their
point of view, an enormously difficult task, demanding great talent and creative
energy. The thought of allowing a user to mess up their carefully crafted plots
raises their hackles. Knowing how difficult it is to get a plot to work well, they
realize that any intrusion by the user into the process will only yield garbage. If
interactivity requires the user to involve herself in the direction of the plot, then
clearly interactivity and plot are incompatible.

Adding to this apparent incompatibility is the attitude of the other side.
The protagonists of interactivity tend to take a dim view of plot. There is a possi-
bly apocryphal story about id Software and the creation of Doom. There was, so
the story goes, some dispute among the designers about the proper role of story
in the game. One faction argued that there should be some story element to tie

6490 AID Chapter 26  10/21/02  1:24 PM  Page 323



324 Chapter 26

everything together. The other faction argued that Doom was to be an action
game, pure and simple, and that “we don’t need no steenking story.” Eventually,
the anti-story faction won out, the losers left the company, and nowadays story
is referred to within the company as “the S-word.” That’s the industry gossip.

So what we have here is an apparent incompatibility between plot and inter-
activity. It would seem, from both theoretical considerations and direct experi-
ence, that plot and interactivity cannot be reconciled. This, in turn, implies that
the dream of interactive storytelling is a chimera.

The central issue that we face here is not new. In slightly different terms,
some of the brightest minds in human history have struggled with this problem.
The results of their efforts might prove illuminating. Now, you might wonder
how a problem in interactive design could have attracted the attentions of
august thinkers in times past, but in fact they weren’t concerned with computer
applications. They were working with a bigger problem: the classic theological
problem of free will versus determinism.

It goes like this: God is omniscient and omnipotent. The unfolding of his-
tory is predetermined; everything that happens in the universe happens accord-
ing to His benevolent design. There are apparent evils in the universe, but these
are all part of God’s wise plan. This includes the actions of people as well as the
actions of natural phenomena. Thus, a terrible disaster is an “act of God,” but
so is a murder. How, then, can human beings have any free will? They are pawns
in the hands of an omnipotent God. If we did have free will, then God would be
neither omnipotent nor omniscient, for then He would neither control nor
know what we might do. But if He is neither omnipotent nor omniscient, how
can He fit any definition of god? Thus, free will clashes with determinism.

The connection with interactive design should be obvious. Determinism in
theology is analogous to plot in storytelling. Free will corresponds to interactiv-
ity, for how else can a user interact without the exercise of her free will? Indeed,
we can make the analogy more explicit by viewing the creative person as the cre-
ator of a miniature universe. The storyteller, for example, creates an imaginary
universe populated by the story’s characters. Like some omnipotent god, the sto-
ryteller decides the characters’ actions and predestines their fates. To reverse
the analogy, the history of the universe is nothing more than a huge story writ-
ten by God that we act out. As Erasmus wrote long ago, “What is this life but a
kind of comedy, wherein men walk up and down in one another’s disguises and
act their respective parts.”

Every interactive designer creates a tiny universe and exercises godlike con-
trol over that universe. A website is a tiny intellectual universe with its own laws
and logic; it is a complete and consistent unit. Yet, the user of a website clearly
exercises free will in perusing it. What difference is there between the artist as
god of storytelling and the designer as god of the website?

Here’s a counterargument: “Free will in the real world could be an illusion.
After all, God would want us to think that we have free will, but in fact He has
already determined our actions for us. We think that we are making our own
choices, but in fact our choices are predestined. Even if we try to assert our free
will by deliberately making apparently arbitrary decisions, that, too, can be
explained as God’s plan for us.”

6490 AID Chapter 26  10/21/02  1:24 PM  Page 324



Control vs. Interactivity 325

The debate took a new turn about 70 years ago with the Heisenberg
Uncertainty Principle and the introduction of quantum mechanics. The
Uncertainty Principle established that the behavior of the universe was funda-
mentally random. That is, the most basic processes that underlie the functioning
of the universe are unpredictable. Even the simple act of measuring the position
and velocity of any particle cannot be carried out without some unavoidable,
unpredictable error. This blows determinism right out of the water. If you can’t
even be sure where an electron is or where it’s going, then you certainly can’t be
sure what a complex system like a human being will do. And if the fundamental
processes of the universe are at core random, then there’s no way that they can
follow a predestined course. Predestination just went down the tubes.

But this was not a triumph for free will. Quantum mechanics replaces deter-
minism with randomness. We aren’t predestined to go to hell; it’s all a flip of
the coin. That doesn’t make you feel any better, does it?

Quantum mechanics also had another consequence: not only did it shatter
determinism; it also shattered temporal reversibility. This is the notion that the
laws of physics can work backwards in time just as well as they work forward.
Before quantum mechanics, physicists were embarrassed to admit that they
could not explain why time always moves forward. In the entire structure of
physics, there wasn’t a single fundamental reason for time to be unidirectional.
The fact that time is unidirectional was a baffling reality for physics. But quan-
tum mechanics changed all that. (Warning: At this point, I am expounding per-
sonal opinions rather than generally acknowledged truths.) For example, the
final destruction of Maxwell’s Demon (an imaginary creature who violated the
Second Law of Thermodynamics, thereby challenging the unidirectionality of
time) was not accomplished until Leon Brilloun used quantum-mechanical argu-
ments to finish him off.

But it’s easier to see the relationship between quantum mechanics and tem-
poral irreversibility if you think in terms of the Uncertainty Principle. This prin-
ciple establishes that information knowable about the universe is finite. Now
combine this fact with the knowledge that information “draws interest”—that is
to say, information gained about a physical system at one time can be combined
with information obtained about that system at a later time to gain even greater
knowledge of the system, in a manner that exceeds the simple sum of the meas-
ured information. The longer you wait between measurements, the more inter-
est (additional information) you can earn from a second measurement. This, of
course, would permit you to gain infinite amounts of information about the uni-
verse, thereby violating the Uncertainty Principle. Besides, the total amount of
information in the universe is finite. The resolution to this apparent quandary
lies in the fact that information degrades with time because of the Uncertainly
Principle. If you gather information about a physical system and then gather
more information at a later time, you won’t be able to meaningfully combine the
data from the two measurements because the system will have randomly
changed in ways that render the combination useless.

Thus, the Uncertainty Principle establishes temporal irreversibility. Time
has an unambiguous arrow defined by the necessary degradation of information
arising from the Uncertainty Principle.

6490 AID Chapter 26  10/21/02  1:24 PM  Page 325



326 Chapter 26

Reversibility through Undo

But computer applications permit temporal reversibility within their universe
through the simple, ubiquitous, and life-saving mechanism of the Undo com-
mand. We all know how handy this command is. Whenever we make a mistake,
just select that Undo command, and poof!—the mistake disappears. But consider
the Undo command from the point of view of a storyteller. That command
reverses time, allowing you to jump backwards to a point before you made your
mistake. In effect, you go back in time and change your decision.

The use of undo proves your possession of free will. If you type “pig-headed
ass,” then one could argue that you were predestined to type that phrase, but if
you go back and retype it as “suffering from a misunderstanding,” then there
can be no argument about predestination. Temporal reversibility allows us to
prove free will—at least in the tiny universe of a computer program. By the way,
this is why infinite undo capability is important—it permits greater exercise of
free will.

We don’t get temporal reversibility in the real world. Wouldn’t it be great if
we had an Undo button on a remote control that allowed us to back up and do
something over again? Alas, the real world is not so forgiving as the artificial
world of a word processor. And this means that we cannot use temporal
reversibility in the real world to prove our free will. Falling back on the theologi-
cal discussion, this suggests that temporal irreversibility is God’s kluge to cover
up His decision to deny us free will, but allow us the belief that we possess it. If
we could go back in time and change our decisions, then we could prove that we
have free will. The fact that we can’t suggests that maybe we don’t . . . right?

Thus, we see theology, physics, and interactivity design all brushing elbows
on the issue of free will and determinism. Indeed, the intellectual possibilities
here suggest that a merging of interactivity design with theology could yield an
exciting new field of research: experimental theology. Think of the possibilities!

An Alternative

As it happens, however, there is another resolution to the problem of free will
versus determinism, one that embraces physics and rationalizes faith. It says that
God is omnipotent with respect to process, not data. That is, God controls the
universe through His laws, but not through the details. God does not dictate the
position and velocity of every electron and proton in the universe; instead, He
merely declares, “Let there be physics” and then allows the clockwork of the uni-
verse to run according to His laws. God’s control over the universe has not less-
ened; it has instead become more abstract, more indirect, and therefore harder
to perceive.

This approach provides us with the resolution of our apparent conflict
between free will and determinism. God determines the principles under which
the universe operates, but grants us free will to choose as we wish within those
rules. He even works a little randomness into the system to ensure that we
aren’t automatons responding robotlike to our environments. The important
point is this: God is a process- intensive designer—He specifies not the data but
the process!

6490 AID Chapter 26  10/21/02  1:24 PM  Page 326



Control vs. Interactivity 327

The same resolution works with the apparent conflict between plot and
interactivity. If you are a data- intensive designer, then you are necessarily a
deterministic one. Like some Bible-thumping fundamentalist, you insist that
every single word you write must be obeyed literally by the characters in the
story. The fundamentalist focuses all his beliefs on the data of the Bible rather
than the processes behind it.

But if you are a process- intensive designer, then the characters in your uni-
verse can have free will within the confines of your laws of physics. To accom-
plish this, however, you must abandon the self- indulgence of direct control and
instead rely on indirect control. That is, instead of specifying the data of the
plotline, you must specify the processes of the dramatic conflict. Instead of
defining who does what to whom, you must define how people can do various
things to each other.

Perhaps you object that this is too esoteric, too abstract to allow the rich-
ness of tone that a good story requires. If so, consider what a story communi-
cates. A story is an instance that communicates a principle. Moby Dick is not
about a whale; it is about obsession. Luke Skywalker is a lie, but the movie’s
truths about growing up and facing the challenges of manhood are its real mes-
sage. Stories are literally false, but they embody higher truths. The instances
they relate never happened, but the principles they embody are the truth that
we appreciate. They are false in their data but true in their process.

Given this, consider the nature of the communication between storyteller
and user. The storyteller seeks to communicate some truth, some principle of
the human condition. Rather than communicate the truth itself, she creates a
particular set of circumstances that instantiate the truth she seeks to communi-
cate. This instantiation is what she communicates to her user. The user then
interprets the story, inducing the higher principles from the story’s details.
Note, however, the indirection of this process. The storyteller seeks to communi-
cate some truth of the human condition; the user seeks to learn the same.
Instead of just telling the principle, the storyteller translates the principle into
an instantiation and then communicates the instantiation; then the user trans-
lates the instantiation back into a principle. This is truly a roundabout way to
get the job done.

Interactive storytelling differs from this process in two fundamental ways.
First, the process of translating principle into instance is delegated to the com-
puter. The storyteller retains full artistic control, but must now exercise that con-
trol at a more abstract and indirect level. The basic scheme of translating
principle into instance is retained, but is now performed by the computer. This,
of course, entails considerable effort in algorithm creation. The second funda-
mental difference is that, because the story is generated in real time in direct
response to the user’s actions, the resultant story is customized to the needs and
interests of the user, which compensates for any loss in polish with its greater
emotional involvement.

Shrink not from this task; it may sound inhumanly difficult, but it is done all
the time, and by amateurs, no less. Here’s Grandpa taking little Annie up to bed:

“Tell me a story, Grandpa!” she asks.
“Okay,” he replies, “Once upon a time there was a pretty little girl who had

a pony. . . . ”

6490 AID Chapter 26  10/21/02  1:24 PM  Page 327



328 Chapter 26

“Was it a white pony?” Annie interrupts.
“Oh, my, yes, it was as white as snow. It was so white that the sunlight

reflecting off its coat dazzled the eye. And the little girl and the pony would go
riding along the beach....”

“Did they go riding in the mountains too?”
“Why yes, as a matter of fact, they did. After riding along the beach, they

would ride up the green canyons, jumping over the brush and ducking under
tree branches, until they came to the top of the mountains. And there they
would play at jumping over boulders. . . . ”

“I don’t like to jump.”
“Well then, instead of jumping, she would let her pony graze in the rich

deep grass on the mountain’s summit while she sat in the sun.…”
And so the story goes on. Note that Grandpa does not respond to Annie’s

interruptions with “Shuddup, brat, you’re messing up my carefully prepared
plot!” He wants those interruptions, his storytelling thrives on them. Grandpa
does not enter the room with a carefully planned and polished plot, all set to
dazzle Annie. He comes in with basic principles of storytelling, and then he
makes up the story as he goes along—in response to Annie’s needs and interests.
The story that he creates is their special story, just for Annie and himself, and
no other story will ever be the same. Because it is their special story, it means
more and has more emotional power than any high-tech Hollywood extrava-
ganza. Yes, it lacks the careful plotting, the intricate development, and the glori-
ous special effects of the Hollywood product. But its roughness is more than
compensated for by its customization. Sure, Annie likes The Lion King—but she
treasures Annie and the White Pony.

Now, if some schmuck of an amateur storytelling grandpa can pull that off,
why can’t we big-shot professionals do the same?

Other Points of View

The absurdity of the faux dilemma of control versus interactivity leaps out at us
when we contemplate the design of productivity applications such as word
processors. Can you imagine the designer of a word processor imposing a “stan-
dard business letter” on the user, permitting him only a few menus to alter the
addressee, the subject, the date, and so forth? The word processor designer has
no problem with control; the division of responsibility is clearly drawn: all the
data belongs to the user, and all the process belongs to the designer. That’s why
design of word processors is now considered a solved problem. 

Much the same applies to the other productivity applications. Your spread-
sheet doesn’t come equipped with your budget data on the CD; you provide the
data, and it provides the processing. The same thing goes for photo-retouching
programs, database programs, drawing and painting programs—the pattern is
clear and successful. Note further that these are some of the oldest program
families in the world of personal computing. They’ve gone through so many
years of evolution that they’ve settled down into their optimum configuration:
process from the designer, data from the user.

6490 AID Chapter 26  10/21/02  1:24 PM  Page 328



Control vs. Interactivity 329

The web offers some difficulties to this view; after all, a web page is basically
a collection of data with very little processing. It would seem, then, that the Web
violates the division of responsibility so clear with productivity applications. This
suggests to me that the web is not far down its evolutionary path. It needs more
processing. It is still a pile of answers rather than an answerer of questions.

Turning It Around

Now let’s turn this whole approach inside out and look at it from the negative
point of view. What, precisely, have we learned from the many failed attempts at
interactive storytelling? What is the precise nature of these failures? I would
argue that all past efforts in this direction have not been interactive storytelling,
but rather “interactivized stories” or “storyized games.” At a structural level,
they are not storytelling; they are stories. The difference here is profound: it is
the difference between the process of storytelling and the result of storytelling
(a story). Storytelling is not the same thing as a story: storytelling is an activity, a
process, while stories are collections of facts, data. You can’t interact with data—
you can interact only with processes. Our current efforts at interactivizing sto-
ries are as pathetically ignorant as the efforts of Dr. Frankenstein, who saw life
as a collection of body parts rather than an interaction of biochemical systems.
If only we can stitch together the body parts, he thought, then we can create
life. But body parts are not life—they are but the reified manifestations of living
processes. Dr. Frankenstein might have kept on, adding more and better body
parts, using higher voltages, better stitching techniques, but he was doomed to
failure, because his approach was too reified, too thing-oriented and not
process-oriented. In the same way, we pursue interactive storytelling by adding
more graphics, more animation, more puzzles—more things—to our efforts, but
we are just as doomed to failure.

The solution is to shift our thinking from the things of stories to the
processes of storytelling. Indeed, the life sciences people have shown the way.
Frankenstein was fictitious, but in fact the life sciences people have been making
steady progress toward his goal by concentrating their attentions on the
processes of life rather than the things of life. Molecular biology, the study of
the basic chemical processes of life, is making great strides toward the creation
of artificial life. We now toy with living systems, not by stitching body parts
together and zapping them with high voltage, but by manipulating the DNA that
controls organisms. This is a more abstract but more powerful approach.

In much the same way, we must shift our thinking from the gross parts of
stories to the deep abstractions of storytelling. The people who focus their atten-
tions on such details as cinematic technique in interactive storytelling are Igors
looking for fresher, stronger body parts.

This abstract approach gives us ready answers to several of the commonly
cited objections to interactive storytelling. If you think of an interactive story as
a collection of story parts, then the objection that the user must play along with
the story parts is compelling. But if you think of interactive storytelling as a
process of responding to the user’s interests, then behavior that is viewed as per-
verse in the old model is now seen as informative. “You don’t like Juliet? How

6490 AID Chapter 26  10/21/02  1:24 PM  Page 329



330 Chapter 26

about someone more like Cindy Crawford? Or Mother Theresa?” If the user is
absolutely determined not to play along with anything, then we can’t cram enter-
tainment down his throat. What’s the problem with this? It’s what he wants!

In like fashion, the complaint that interactivity works against the immersive
experience is an artifact of the faux- interactive approach we’ve been using. We
whipsaw our users when we present them with an interactivized story, for the
interactive aspect of our creation demands activist behavior, but the story aspect
demands passive behavior. The basic conflict emerges because the artist insists
on taking the user down a predetermined path (as is the case with conventional
stories), while at the same time demanding the user’s active involvement in the
course of the experience. “Let’s do it my way!” is a selfish attitude that nobody
will pay good money for.

For those readers who are atheists and therefore found the earlier discus-
sion of theology off-putting, here’s a different angle: Consider the political
power wielded by the president of the United States. It is certainly greater than
the political power wielded by any dictator or tyrant in history, yet the president
has no direct control over anybody’s path. He can’t tell you what to eat for din-
ner, what clothing to wear, what job to work. Yet his power to influence tax pol-
icy, foreign trade, and a hundred other areas of life gives him vast power to
influence your life. In a more primitive society, the leadership exercised more
direct control over a population that was too dumb to take care of itself, but our
notions of politics presume a sophisticated population that makes decisions for
itself under the indirect control of the government. We have long since dis-
carded the old notions that the population is divided into competent aristocrats
and incompetent plebeians.

Yet in the field of the arts, we still cling to such archaic notions. We pre-
sume a black-and-white distinction between artists and nonartists. This artificial
distinction then vests total control in the hands of the artists, and none in the
hands of the plebeians. I would ask, are the plebeians so stupid, so dense, so
utterly lacking in artistic sensibility that we cannot afford them some measure of
artistic control? The fact that some people are more artistically advanced than
others does not argue for total control on their part, only control at a higher
level of indirection.

Trust the people. Trade direct control over a small pie for indirect influence over a
larger pie.

6490 AID Chapter 26  10/21/02  1:24 PM  Page 330



27
T H E  T W O - C U L T U R E S  P R O B L E M

Interactivity design lies at the juncture between
arts/humanities and science/engineering. The chasm

between these two cultures explains the dismal state of
interactivity design. This chasm must be bridged.

About 40 years ago, a British philosopher named C. P. Snow pointed out
that Western intellectual culture had bifurcated into two mutually antagonistic
subcultures: an arts/humanities subculture and a science/engineering subcul-
ture. Much hand wringing was expended over the fear that this “two-cultures
problem” might worsen. Technology without soul is antisocial, and art without
technology is feckless.

I don’t know if the situation has improved or deteriorated since C. P. Snow’s
time, but I do know that right now, it’s bad, and the problems reach like a carci-
noma’s tentacles through much of the body intellectual.

Techie Pinheads

I am most familiar with the technical people, and I have plenty of nasty things
to say about them. They’re so bloody narrow minded! Not the best of them,
mind you: the best scientists have always enjoyed and respected the arts. It’s the
rank and file who rankle me by defiling science with their small mindedness.
The most obvious manifestation of their narrowness is their stunted lack of

6490 AID Chapter 27  10/21/02  1:25 PM  Page 331



332 Chapter 27

appreciation of the arts. Their literature library consists of a few dozen science-
fiction books; while many enjoy music, their tastes lack catholicity, concentrating
obsessively on some tiny niche in the vast universe of music. In the visual arts,
they predictably go for affectless stuff: computer-generated mathematical pat-
terns or integrated circuit layout patterns. Of course, theater, architecture,
sculpture, or any of the more “obscure” arts are beyond their ken.

Sadly, many of them try to organize their lives, relationships, and feelings
along logical or engineering lines. An argument with a spouse is transformed
into a debate over efficiency; vacations are organized for maximum areal cover-
age or minimum travel times. The most absurd expenses for technical toys are
rationalized on trumped-up grounds of productivity. I don’t offer these observa-
tions to establish personal depravity; we all have our foibles, and these behaviors
are mere peccadilloes. My purpose in this paragraph is to illustrate a mindset
that in other areas has poisonous consequences.

Those consequences arise from an imaginary and artificial segregation of
the arts from the sciences. Indeed, “segregation” is too delicate a term; the atti-
tude is just another form of bigotry. Most S&E people hold arts and humanities
to be intellectually flaccid, lacking the demanding requirements of the sciences.
They disdain the ambiguities and subtleties of A&H as self- indulgent subjectiv-
ity, inferior to the disciplined objectivity of the sciences. S&E people consider
themselves indubitably superior to A&H people. (Again, I exclude the better
and brighter members of the S&E community from this generalization.) A&H
people were the ones who couldn’t hack the tough courses in school and ended
up in the arts classes—which were little more than glorified basket-weaving
courses. How many times was our brilliant S&E guy solicited for help with sim-
ple algebra by those A&H pansies? And remember how seldom he reciprocated
such a request—as if he had time to waste on those A&E classes in the first
place! Of course, there were many cute A&H chicks needing help, and so few
S&E chicks . . . .

Yes, sexism gets intermingled with the intellectually bigotry. We can’t deny
that a strong majority of S&E people are XYs, and that, to a lesser extent, the
reverse is the case with A&H. Those S&E males view A&H males with some
contempt, and A&H females as fuzzy-headed sweeties. By contrast, they view
S&E females with some trepidation. Clearly, such females are worthy of respect,
but they can also be dangerous: should they prove superior in technical expert-
ise, they could humiliate the S&E guy in the canine hierarchy of male S&E
communities.

Thus, S&E people build a wall—they think of it as a floor—between them-
selves and the A&H people. They don’t mix, they don’t share ideas, and they
disdain the values of the A&H people.

Artsy Anger

But now I turn my baleful glance toward the A&H people who, being human,
are afflicted with their own foibles. They, too, narrow their perspective, but in
different ways and for different reasons. At some unconscious level, they

6490 AID Chapter 27  10/21/02  1:25 PM  Page 332



The Two-Cultures Problem 333

acknowledge a germ of truth in S&E’s superiority complex. They, too, remem-
ber their school days and those humiliating science and math courses. It pains
them to recall how stupid and incompetent they were made to feel. Homework
problems that reduced the A&H person to helpless babbling would evince a
patronizing smile and a breezy solution from their S&E friends. Even the bright-
est, most successful, and most confident student of A&H felt like a kinder-
gartener in introductory physics. 

Combine the proven but meaningless incompetence of the A&H person
with the obvious sense of superiority of the S&E person (emotional subtlety is
unknown to S&E people), and you have the makings of a deeply imbued resent-
ment. Add the creeping invasion of technology into our daily lives (gadzooks!
computers in the art studio! is nothing sacred?), and the resentment smolders.
To top it off, let’s have society lionize and reward Bill Gates and his like, and the
resentment bursts into flame. A&H people resent S&E with a frightening but
well-concealed intensity. They can’t admit that resentment to others or even to
themselves; it’s not “adult.” But its symptoms are obvious—and destructive.

Consider the laggardness of A&H’s embrace of the computer. This endlessly
capable device should have penetrated every realm of human endeavor all but
instantaneously. S&E pounced on it, business embraced it, but A&H accepted it
hesitantly. As the computer revolution surges irresistibly forward, A&H brings up
the rear. Search the Internet for software; you’ll find terabytes of S&E stuff, giga-
bytes of business programs, and a smattering of A&H software.

There is no justification for the paucity of A&H software; the world of A&H
can benefit just as much from computers as any other area. Nor can A&H peo-
ple plead poverty; a huge amount of software is written by amateurs and made
available for free. The reason for this deficiency lies in the fear and resentment
that A&H people bear toward the S&E world. The computer is, after all, S&E to
the core. Attempt to purchase a computer, and the salesperson tests your techni-
cal expertise: how many megabytes? Will that be with a DVD and an internal
modem? Will you take a Pentium IV at 1800 MHz or a plain old Pentium III at
700 MHz? You’re going to spend a thousand bucks on a computer and you
don’t even know what a CPU is?

Pull your new computer out of the box and smell that high-tech aroma of
plastic and electronics. Fire it up, and you face more tests. The operating system
wants to know what options you desire—options expressed in acronyms that you
never heard of. What’s a TCP/IP? What if it fell out of the computer during
unpacking? I bought 256 MB—that was a big decision that I’m proud of—but
now the operating system is offering me more megabytes if I want them—but
what’s the difference between a virtual megabyte and the normal kind? You
poor, dumb, presumptuous A&H brat; how dare you enter the S&E domain!

But the worst comes when, in despair, you turn to technical assistance. If
you call some company’s technical support line, the customer service rep treats
you like an idiot (“Did you remember to plug it in?”) and cannot conceal his
impatience with your mental slowness. (Have you ever noticed that tech support
people are almost always male, while every other business on the planet employs
mostly women for customer service work, knowing that they are often better at
human relations?) Once again, just like old school days, the S&E people are
making you feel stupid. Bah!

6490 AID Chapter 27  10/21/02  1:25 PM  Page 333



334 Chapter 27

Why Don’t Artists Program?

Suppose, however, that you claw your way through the confusing and often inap-
propriate instructions. You now have a functioning computer. More travails fol-
low as you attempt to master some of the standard applications: word
processing, email, and so on. If you are so thick-skinned that you can endure
these slings and arrows and press further, an even more chilling prospect awaits
you. Like some computer game, you master each level only to be presented with
a more difficult level—and the final level always has the biggest, meanest, tough-
est monster of them all. In your case, that monster is programming.

Software is the only thing that makes computers useful; the potential utility
of a computer to any person is only as great as the supply of software pertinent
to that person’s pursuits. Whence comes such software? Most people answer
that question with “programmers”—but that is incorrect. Programmers have
nothing more to do with software creation than printers have to do with book
creation. Both functions are necessary for the completion of the process, but
with books we recognize that the truly hard part is not done by the printer, but
by the author. Why can’t we do the same with programmers?

Yes, programming demands considerable technical skill, but so does print-
ing. A more convincing explanation is that writing a book is less technically
demanding than creating a program. But step back for a moment and consider
the amount of expertise that must be brought to bear on the task of writing a
book. We’ll not concern ourselves with the content—only the technical require-
ments. First is the mastery of the language used. We take that for granted
because we have already learned that language, and we use it daily, but that does
not permit us to ignore the requirement. Consider, then, that the author of a
book has years of experience with the language and plenty of expertise in
spelling, vocabulary, and grammar. There is also, of course, the requirement
that the author master a word processing program, but that task is small com-
pared to the previous one.

Closed A&H Minds

I submit the admittedly controversial claim that programming isn’t difficult. I
consider it to be a glorified form of accounting. I further submit that any nor-
mal human being can learn to program.

Yet my own experience disproves my claims. I have on two occasions under-
taken to teach an A&H person to program. In each case, we used an easy, entry-
level language, not the clanking, hissing monstrosities that professional
programmers use. Both of my students were bright—no, brilliant—people with a
pressing need to learn the material. And yes, I confess: both were cute chicks.

Both attempts failed. Both students made every effort, but in the end, their
understanding of programming was too superficial to permit them to actually
do anything, however simple, with their knowledge. They just didn’t get it. 

Yet I refuse to accept this result. I blame the students for their failure, but I
don’t question their intelligence, their effort, or their sincerity. These women
were obstructed by their emotional orientation. As A&H people, they simply

6490 AID Chapter 27  10/21/02  1:25 PM  Page 334



The Two-Cultures Problem 335

could not embrace the linear, disciplined thinking of S&E. I refuse to accept the
excuse that the human mind, once set in its mode of thinking, is incapable of
adopting any other mode; I have seen too many cases of normal people switch-
ing modes (under the right conditions) to accept that switching modes is an
unusual or difficult task. When I taught physics for nonscientists, some of the
A&H students were able to embrace and revel in the strict linear thinking of
that field, and some could never get it. Strikingly, the difference between the
successes and the failures was not intelligence, but an emotional openness, a
willingness to try on different hats just for fun. But I was seeing these students
in their early college years, before they had learned the mores of the A&H cul-
ture. It wasn’t their mode of thinking that hardened later, but their sense of
identification with A&H and its concomitant (and unnecessary) rejection of all
things S&E, including its mode of thinking. Have you noticed that the phrase
“linear thinking” is the A&H disparaging euphemism for “S&E thinking”?

Tribalism

Hence, we have an impenetrable wall between A&H and S&E, enthusiastically
erected by both sides. Their tribal identities are well established; the pom-pom
girls for each side whip up the barbaric anti-otherness cheers. “Hooray for our
side! Boo-hiss on theirs!” 

The penalty we pay for this tribalistic nonsense has been light for the last
few decades, but with the advent of interactivity design, the problem punches us
in the solar plexus. Interactivity design requires both styles of thinking, an inte-
gration of A&H with S&E.

You need only look at the software we have created to appreciate the magni-
tude of this problem. Consider computer games, S&E’s attempt to apply the
computer to an A&H kind of use. They’re terrible! True, they’re fine for the
underdeveloped minds of kids, but how many mature adults actually enjoy com-
puter games? Perhaps I should rephrase that question: how many non-S&E
adults actually enjoy computer games? We all know the answer: precious few.

The reason for this failure is immediately obvious to any A&H observer:
computer games lack heart and soul. They come in two flavors: nihilistic, blood-
drenched orgies of killing and violence requiring fast reflexes and tricky strat-
egy; and puzzle games that are pointless exercises in obscure logic, random
guesswork, and tedious trial and error. Those poor S&E people don’t under-
stand the most basic truths of A&E, so they grind out endless clones of these
two flavors.

Software Sucks

Consider now the sorry situation of computer operating systems. Let’s be hon-
est: Windows is a cruel joke on the innocent user. Like some twisted adventure
game, it bristles with trap doors, hidden compartments, lurking monsters,
rolling boulders, and secret doors. I’m quite certain that, if I use Windows long
enough, someday I shall certainly find the captive princess hidden inside it.

6490 AID Chapter 27  10/21/02  1:25 PM  Page 335



336 Chapter 27

I myself am afraid to mess with my PC because Windows’ complexities
befuddle me; its propensity for damaging error terrifies me. But I’m not the
only person befuddled by Windows. When I get in trouble with it, I call my old
friend Dave. Dave’s a whiz with this stuff; he has assembled, configured, and
fixed hundreds of PCs. He’s had a variety of software jobs, many of them at a
higher level of technical responsibility than programming. Despite all this
expertise, Dave still has problems getting Windows to work. He slices through
the easy problems, the kind that clobber you and me, with alacrity. But every
now and then, I come up with a problem that stumps him. He always solves it in
the end, but it’s scary just how hard it can be for an expert like him.

Why are computer operating systems so blasted hard to use? I believe that
the primary deep cause is the shortage of A&H people in the computer commu-
nity. In the first place, S&E people don’t mind technical messiness; indeed, they
enjoy having more buttons to push. Because the A&H people have entered the
computer marketplace late and in dribbles, computer makers cater to their pri-
mary customers: S&E people who don’t mind messy user interfaces. Moreover,
the shortage of A&H people makes it difficult for computer makers to find and
hire A&H people with computer expertise. So we end up with an operating sys-
tem that, if it were a person, would be institutionalized and sedated.

The Gloomy Prospect

The two-cultures war is now older than most of its participants. The world of
computer games is soulless and antisocial, exactly as C. P. Snow would have pre-
dicted. Most of the artists engaged in interactive design have reduced them-
selves to utter fecklessness because they refuse to confront the technology of the
computer on its own terms. They insist on treating the computer as nothing
more than a souped-up version of the technologies with which they are already
familiar. To these people, the computer’s attraction comes from the ease with
which they can now assemble exactly the same kind of art that they’ve been
assembling for decades. The computer is an audiovisual device, a digital
VCR/slide projector/tape recorder—nothing more. It’s the Same Old Shit, digi-
tized and a thousand times faster. The possibility that something entirely new
might be in the offing does not seem to loom large in their thinking.

After many attempts to help the two warring camps cooperate in the colo-
nization of the interactivity universe, I have come to the unhappy conclusion
that this union will not come about any time soon. The two sides are just too far
apart and too set in their ways to accept the kind of major change in thinking
required to pull it off. When it does come about, my hunch is that the artists
will lead the way, not the techies. The artists are lean and hungry, whereas the
techies are fat and happy. Computer games make enough money to confirm
industry prejudices; little change will come from that direction. The artists, at
least, are still struggling, and out of all this struggle, a few pioneers will emerge
who will show everybody else the way.

6490 AID Chapter 27  10/21/02  1:25 PM  Page 336



The Two-Cultures Problem 337

Prescriptions

Here’s what you should do if you’re from the S&E tribe: first, read some litera-
ture. Don’t confine yourself to science fiction. It’s not that I have anything
against science fiction; some of my best friends are science-fiction writers. It’s
just that you need more breadth. When was the last time you read Shakespeare?
There are zillions of great books out there, and they didn’t become classics by
wasting people’s time. Spend some time with other art forms, but pay attention
when you do. Some of that stuff is immensely clever, but you can’t appreciate it
with a quick glance. You have to take the time to understand the subtleties. If
you doubt this, just go back and reread one of those classics you hated so much
in high school. It’ll read a lot differently from the perspective of a mature adult.

As for you A&H people, I have three specific recommendations. First, make
no apologies and feel no shame for your supposed lack of intelligence; difficulty
understanding technical material in no manner bespeaks stupidity. It’s just a dif-
ferent dimension of intelligence. Second, indulge the S&E people their emo-
tional clumsiness. Just as you can’t hack calculus, they don’t understand the
human condition. It’s not their fault that they act like clods; it’s just their think-
ing style. Third, learn to program; you can’t evade that requirement for interac-
tivity design.

Last, to everyone I make a plea: we must not tolerate two-cultures prejudice.
We must promulgate a cherishing of the bridge-building task between the two
cultures. We must applaud those hardy souls who dangle in the chasm between
the two cultures, drawing thin strands of community between the two sides. We
must disdain those pig-headed fools who dig their heels into their side of the
chasm and snarl epithets at the opposite side. The magic of the interactive
medium is not to be found on either side of the chasm; it pulsates somewhere in
the airy space between them, the void populated by a nimble few who clamber
like monkeys on the thin skein of ropes that now constitute the only bridge
between the two cultures. This is the territory we must explore and colonize. 

Don’t look down—it’s a long way to the bottom.

6490 AID Chapter 27  10/21/02  1:25 PM  Page 337



6490 AID Chapter 27  10/21/02  1:25 PM  Page 338



28
I N T E R A C T I V E  S T O R Y T E L L I N G

Interactive storytelling is a new field in interactivity
design, explicitly combining the artistic with the techni-

cal. It is not at all like conventional storytelling, requiring
a more abstract approach.

This unconventional topic deserves special treatment because I think that it
promises to become a major new field of interactivity design.

What Interactive Storytelling Is Not

My first task is to disabuse you of the many wrong-headed notions about interac-
tive storytelling currently bouncing around. First, interactive storytelling is not
some kind of altered computer game. Computer games are a well-defined
medium placing a premium on action, animation, spatial reasoning, resource
management, and graphic spectacle. These desiderata confine computer gaming
to a subset of the population, mostly young S&E males. Interactive storytelling is
aimed at the general population; hence, its desiderata are profoundly different.
The story comes first: plot and character command more design attention than
cosmetic factors. Moreover, interactive storytelling will attract a completely dif-
ferent set of authors, publishers, distributors, and retailers than computer gam-
ing utilizes.

6490 AID Chapter 28  10/21/02  1:27 PM  Page 339



340 Chapter 28

Interactive storytelling is not interactive fiction. The latter field is the next-
generation text adventure; its adherents prize parser quality, puzzle depth, and
mapping cleverness. Plot and character rank only secondary status.

Interactive storytelling is not digital storytelling. This term applies to the
use of the computer in conventional storytelling as a tool for producing compo-
nents previously handled with other technologies.

Interactive storytelling is not the same thing as interactive stories. This latter
term is a misnomer and a technical impossibility. A story, once created, is frozen
in place by its plot; interaction is impossible. A story is information, which can-
not be interacted with. Storytelling, on the other hand, is a process—which can
be interacted with.

The Difference between an Interactive Story and a Conventional Story

Let’s consider an “interactivized” Romeo and Juliet. The original is a single story
about a single couple in a single context with a single outcome. By itself, the
story is meaningless; who cares about a couple of Italian twits who died hundreds
of years ago? What makes the story compelling is its generalizable relevance to
our lives. I’m not Romeo, but I, too, have been torn between conflicting personal
loyalties. Thus, I may not learn from his precise example, but I derive benefit
from a generalization of the forces at work in the original play.

Thus, an interactive Romeo and Juliet would not be about Romeo and Juliet;
it would be about the collision between love and social obligations. This distinc-
tion is crucial to understanding the advantages—and disadvantages—of interac-
tive storytelling. If you insist that an interactive Romeo and Juliet must be about
Romeo and Juliet, then you must also insist that it follow the plot of the original
play. But if instead you shift your point of view and require that an interactive
Romeo and Juliet be about the collision between love and social obligation, then a
great many plot developments are possible that remain true to the work.

Consider the nature of the truth regarding the collision between love and
social obligation. Such truth is complex and multidimensional; nobody could
reduce it all to a single statement. Yet understanding it is vital to our existence
as human beings. So how can our wise ones communicate such truths to our
younger ones? Storytelling is one way to do so, but a single story offers only a
single glimpse at a broader truth. Romeo and Juliet shows us just one facet of this
multifaceted jewel of truth. If we wish to understand the matter, we must have
other glimpses from different angles. If in one such glimpse, Romeo and Juliet
live happily ever after because they have found one resolution to the conflict
between love and social obligation, then what is wrong with that? It would be
false to Romeo and Juliet, but it would be true to the point and purpose of the
work. So what’s our goal here? Is our goal to kill off Romeo and Juliet or to
reveal something about love?

Consider an analogy. Suppose I asked a painter to create a portrait of me.
This painter is an artist who seeks to capture the essence of my nature in this
portrait. She labors long and hard and eventually brings forth a portrait show-
ing me with mouth open and index finger raised in profound expostulation. A
true and insightful portrait, some would say. But now suppose that, displeased

6490 AID Chapter 28  10/21/02  1:27 PM  Page 340



Interactive Storytelling 341

with this portrait, I engage another painter, who produces a portrait of me as
programmer/writer/worker drudge, slaving away at the keyboard while the
wonders of nature parade by unnoticed? This, too, would be a true and insight-
ful portrait, but how do we resolve the conflict between the two portraits?
Which is the “correct” portrait?

The difference between an interactive Romeo and Juliet and the original
Romeo and Juliet is the same difference as that between Chris Crawford and a
portrait of Chris Crawford. Yes, the portrait contains a single truth, powerfully
made. (Who knows? Perhaps Ms. Mona Lisa was really just a dull Italian house-
wife, nowhere near as intriguing as her portrait.) But ultimately, it presents a sin-
gle truth, where interactivity provides many viewing angles to truth. Some of
those viewing angles will not be as dramatic or as powerful as others. We should
not dismiss interactivity as inferior because it fails to winnow out the less reveal-
ing angles. Interactivity shows all of the viewpoints on a truth, strong and weak.
Its catholicity of viewpoint is its strength; its undiscriminating nature is its weak-
ness. Let us not condemn it for its weakness without also recognizing its con-
comitant strength.

Every word processor contains within it gazillions of potential letters and
memos; every spreadsheet carries the seeds of countless budgets and profit/loss
statements. We need merely supply the details to let the final result spring to
life. It would be absurd of me to expect my word processor to write this book
for me; the same lesson applies to interactive storytelling.

Abstracting Storytelling

After thousands of years of stasis, we are ready to move storytelling to higher
levels of abstraction. What exactly do we mean by greater abstraction when we
talk about storytelling? I don’t know for sure—how could a Venetian merchant of
1360 A.D. understand a credit card? Our approach must be to move away from
the specifics of storytelling and think in terms of the grander principles. We
need to invent higher-level constructs. What relates to storytelling as a credit
card relates to coins?

Recall that the storyteller has a Big Idea. He translates the Big Idea into a
story. The story is not the same as the Big Idea; it is only a single instance of the
Big Idea at work. He then communicates the story to the audience, and the
audience induces the Big Idea from the example.

What if that first translation, from Big Idea to story, were not done by the
storyteller but by the computer in collaboration with the audience? In other
words, we simply transfer the process of instantiation from storyteller to com-
puter. The storyteller still defines and controls the Big Idea, but rather than
expressing the Big Idea through a single instance, he expresses the Big Idea
itself in more abstract terminology. He communicates the Big Idea to the audi-
ence in the form of a computer program. The audience runs the computer pro-
gram, which interacts with the audience in such a way as to spawn a story
expressing the Big Idea while matching the interests of the audience.

It’s obviously impossible to achieve a perfect match between creator’s control
and audience’s interests, but this impossibility has always existed with conventional

6490 AID Chapter 28  10/21/02  1:27 PM  Page 341



342 Chapter 28

stories and has never been a serious impediment. So long as we can get enough
overlap between the interests of the audience and those of the creator, the prob-
lem will not be serious.

Another, more important issue concerns the mechanics of this process.
Exactly how does the storyteller express the Big Idea itself in more abstract ter-
minology? What is the abstract expression of a story?

A story is a statement of the mechanics of the human condition. Its simplest
form is, “X did this, and Y resulted,” from which the audience induces, “If I do
X, then Y will result.” The step from “X led to Y” to “if X, then Y” is the funda-
mental induction of storytelling. (Yes, it’s a classic case of post hoc, ergo propter
hoc, but stories aren’t exercises in logic.) And herein lies a crucial difference
between conventional storytelling and interactive storytelling. A conventional
storyteller expresses “X led to Y.” An interactive storyteller expresses “If X, then
Y.” The conventional storyteller, being in total control, spells out every detail of
X and Y. The interactive storyteller has no such control and must instead recog-
nize the audience’s version of X and generate a version of Y that properly corre-
sponds to the stipulated X.

There’s an immensely important idea here: that of creative collaboration
between the designer of a program and the user of the program. With interac-
tivity, we blur the hard lines that separate the creator from the audience. Instead
of dividing the world into creators and dullards, we share creativity in a meas-
ured way. The audience gets just enough creative freedom to meet its needs, and
the heavy-duty creativity remains under the control of the high-powered cre-
ators. With other media, we have a simple choice between artistic tyranny and
artistic anarchy; interactivity permits something like constitutional democracy.
The audience can do anything it pleases within the constitutional guidelines
established by the artist. Isn’t it wonderful? How small-minded are those who
resist this magnificent new opportunity!

You might object: but what if the audience abuses its responsibilities? Look
here: ksdhia wo;hkjnd kjh sdfast sd. I just typed a bunch of garbage. My word
processor permits failure! But I’m a big boy; I can accept responsibility for my
actions. If I type garbage, I don’t feel bad if I get garbage coming out of the
printer. And the same thing applies to interactive storytelling. What’s wrong if
the audience playfully experiments with perverse behavior and discovers idiotic
results? Isn’t that part of the truth of the universe, too?

Getting back to storytelling, the solution is to divide each party’s contribu-
tion along the lines of process and data. Let the designer specify the processes
of the story world, the dramatic rules under which it operates. Let the audience
provide the data operated upon by the artist’s rules. The artist’s process plus the
audience’s data yields a single story. The same processes with another set of
data yields a different story. This is interactive storytelling. Although the imple-
mentation is difficult, the concept is clear and simple. All the other crap float-
ing around about branching, multiple storylines, interleaving, and so on is
either irrelevant or secondary.

Now for an unfortunate aspect of narrative abstraction: it requires more
work and bigger structures. Consider how financial abstraction makes sense only
with bigger economies. The use of money makes sense only if I believe that

6490 AID Chapter 28  10/21/02  1:27 PM  Page 342



Interactive Storytelling 343

somebody else will take my money in return for goods. If I live in a tiny world
with just one other person, money has no utility. A credit card is useful to con-
sumers only if there are lots of retailers that accept it, and it’s useful to retailers
only if there are lots of consumers who use it. Suppose, in a moment of twisted
humor, that God had equipped medieval Europeans with the technology for
credit cards. They still couldn’t have used them, because their economies were
too small to make them worthwhile. Most people didn’t have any money to
spend anyway. What’s a starving peasant supposed to do with a credit card—buy
a cellular telephone? A television set? What use is a credit card in a world with-
out credit agencies, in which credit card slips must be carried on horseback to a
processing center? 

Or consider how political abstraction requires magnitude. Let’s start off
with the assumption that the Constitution of the United States is a good thing.
Fine; let’s use it for the Chris Crawford Fan Club. Unfortunately, the CCFC has
only six members: Chris Crawford, Khublai Khat, Penelope Pig, Galahad Goat,
Binky Burro, and Darth Duck. So, I will be the president, and Khublai Khat will
be vice president, and Penelope Pig will be speaker of the house, and...wait a
minute, who’s gonna be the senators? And where will we get a House of
Representatives? It’s impossible to apply the Constitution to a small polity. With
a group as microscopic as the Chris Crawford Fan Club, a simple dictatorship
might be the only thing that works. (Knowing my luck, I’d probably be ousted
and replaced by Penelope Pig.)

Here’s the problem: the logical links between abstraction and system size
point both ways. As a system grows more complex, it requires additional abstrac-
tion, but additional abstraction makes sense only with more complex systems.
Thus, if we are to take advantage of narrative abstraction, we must also expand
the content of our storytelling.

The basic concept here is to think of the larger issues treated by the story.
Recall my earlier claims that a story is a single instance of a principle at work.
Narrative abstraction requires that we tell the whole principle, not just a single
example of it. Consider, for example, the simple morality tale presented in the
movie Fatal Attraction. In the movie, of course, we present a single tale with a sin-
gle outcome. The “best” outcome was a matter of some dispute; only after the
movie was tested with a number of audiences and alternative endings was the
“best” outcome selected. But there was clearly some uncertainty as to the best
outcome; why did they have to discard the alternatives? The subject of adultery is
not a simple black-and-white moral issue; if it were that simple, why is it so com-
mon? This is a complex issue, one that faces millions of men and women every
day. Surely its complexity cannot be adequately addressed in any single story.

There are so many variables to consider in debating adultery. What if the
wife is frigid? What if the husband brings home a disease? What if the wife is
the one having the affair? What if she does it in retaliation for his affair? How
does a one-night drunken fling compare with an extended affair? No single
story can hope to cover all these issues. It can emphatically make an isolated
point, but it can never address the broad issue. It can powerfully describe a sin-
gle tree, but never the forest.

6490 AID Chapter 28  10/21/02  1:27 PM  Page 343



344 Chapter 28

This is where narrative abstraction enters our vision. The subject of Fatal
Attraction was not adultery but rather a single case of adultery. The subject of an
analogous interactive environment must necessarily be adultery, not any single
case of adultery.

This is why all the attempts to “interactify” existing stories are doomed to
failure. You can’t climb up in abstraction by taking a single example and magni-
fying it. Finance did not evolve by mere magnification; huge financial transac-
tions are not carried out with forklifts moving gold coins the size of manhole
covers. So long as you think about finance in terms of coins, you’ll never get the
idea. So long as you think about politics in terms of who gets to be king, you’ll
never understand democracy. So long as you think about anatomy in terms of
eating and reproduction, you’ll never understand why the brain evolved. And so
long as you think about interactive storytelling in terms of individual stories,
you’ll never get the idea.

This demands far more of the storyteller than any single story ever
demands. The conventional storyteller can contrive the situation to focus atten-
tion on the key point. The interactive storyteller must think in larger terms,
must be more open-minded about her point. Instead of proving that a single
case of adultery can be disastrous, she must instead treat adultery in all its guises
and variations. There are cases in which adultery is understandable; there are
cases in which it does little harm; there are cases in which it is despicable.

Here’s another objection: what becomes of emotional power in such circum-
stances? Fatal Attraction scared the bejabbers out of a generation of husbands;
how could A Simulation of the Ethical Implications of Extramarital Sexual Liaisons
ever have that kind of impact?

Remember, we’re talking interactivity here; there is always a huge emotional
boost whenever the audience gets to control the action, even if the results aren’t
as dramatically powerful as those produced by the professionals. When Uncle
Fredegund and Aunt Martha go to San Francisco, they stop by the Golden Gate
Bridge to take a picture. Sure, it’s not the best photograph ever taken of the
Golden Gate Bridge; Aunt Martha is struggling to keep her hat from blowing
away, and there are two brats strangling a seagull in the background. It would
have been easier and cheaper for them to buy a picture postcard with a photo-
graph taken by a professional photographer in a helicopter on the one day of
the year when the fog and the light were absolutely perfect. But a few years
from now, that amateurish photograph will have much more emotional power
for them than the professional’s work. If you’re a professional artist, and you
want to reach your audience, you want them in the picture. If you could com-
bine your professionalism with their active presence, would that not be grand?

There is one problem that profoundly troubles me, though. The implicit
assumption in storytelling is that the storyteller is wiser than the audience. The
storyteller has some wisdom to impart to the audience, and the audience is pre-
pared to accept her claim to wisdom. But the interactive storyteller must do so
much more; she must be that much wiser. Is there anybody wise enough to cre-
ate an interactive storytelling world? I don’t know.

6490 AID Chapter 28  10/21/02  1:27 PM  Page 344



Interactive Storytelling 345

My Own Work in Interactive Storytelling

A number of researchers have approached interactive storytelling as a problem
of simulating characters. I used this approach in 1987 with Siboot and con-
cluded that it led nowhere. Its problem is its failure to focus on the verbs.
Nevertheless, several worthy efforts have been made by concentrating on charac-
ter simulation, and although I myself do not think it the best strategy, I do not
question the possibilities inherent in these efforts. Interestingly, this difference
of opinion as to the importance of characters versus verbs mirrors the classic
argument in storytelling between character-based writers and plot-based writers.

I have spent most of the 1990s building a technology for interactive story-
telling. It has been a huge task, and I have made many mistakes along the way,
but I am convinced that my fundamental approach is sound and, indeed, the
best overall strategy for achieving interactive storytelling.

My approach centers on the verbs available to the characters—remember the
first admonition of Chapter 8: start with the verbs. Organizing the design
around the verbs completely changes the technology and the design process—for
the better, I believe.

The heart of my technology is the storytelling engine. The engine’s basic
task is to execute verbs. Each verb can lead to another verb, and so on, generat-
ing a long sequence of events: a story. The verbs are created and specified by
the author. Each verb can generate a number of options for other actors. Which
options are available and the rules by which those actors choose among the
options are again specified by the author. The human protagonist is given con-
trol of one actor and makes the choices for that actor. 

The engine uses an extensible personality model with several dozen per-
sonality traits for each actor. It automatically handles the direct interactions of
actors, as well as their indirect interactions through conversations and gossip.
Actors can learn of past deeds and react to them after the fact. They can antici-
pate the consequences of their revelations and selectively reveal information to
each other. They can tell lies about each other and trace the path of gossip
backwards to find its source. They can recall past favors and transgressions;
they can pursue revenge and abort plans if new information causes them to
change their minds.

The user’s options are calculated by the storytelling engine and sent to the
interface, which then presents them to the user for choice in a menu-like fash-
ion. Typically, the user has three to seven choices, such as “Oh, yeah? Take that!
(punch)”; “I’m really sorry I did that; please forgive me”; or “Kiss me!”

All of this is handled by a second program, the Erasmatron. The engine
actually executes the interactive storytelling; the Erasmatron is the development
environment used by the author to specify and edit the data and rules fed into
the engine. The Erasmatron includes editors, navigational aids, and rehearsal
tools. The big idea behind the Erasmatron is to make interactive storytelling
technology directly accessible to artists. What makes this radical step possible is
a transfer of the programming task to the artist in a form that is comfortable
and accessible. I have created a special programming/storytelling language that
jettisons all the picky trivia that make programming such a tedious process.

6490 AID Chapter 28  10/21/02  1:27 PM  Page 345



346 Chapter 28

For example, the storybuilder does not type words in this language; input is
made by selecting pieces and assembling them into larger expressions. This obvi-
ates syntax errors; it is impossible to say something wrong because the
Erasmatron won’t let you choose inappropriate items. Another feature is the use
of strong visual cues. Relationships are spelled out on the screen in meaningful
terms such as Affection or Greed, rather than with cryptic acronyms. Colors
and underlining provide additional reminders. Wherever possible, the
Erasmatron double-checks the artist’s work to catch simple mistakes.

The first task of the storybuilder is to create a cast of actors. Each actor
must be given a name and numbers for such personality traits as Libido and
Gullible. The stages on which the drama takes place must next be specified,
with rules of access for different actors. The props that are used during the
story must be defined, and ownership assigned.

The main task facing the storybuilder is the creation of a large set of verbs.
The verbs are really the heart of the story world; I believe that a good story
world requires at least a thousand verbs. Each verb must have a set of roles. A
role is a dramatic slot into which an actor might fit. For example, if Puncher
punches Punchee, then one role might be Punchee’s Best Friend, who presum-
ably would come to the Punchee’s defense. Another role might be Punchee’s
Girlfriend, whom we would expect to scream, rush to console Punchee, and pos-
sibly hurl a few epithets at Puncher. There could also be Intervening Bystander,
who might step if the fight goes too far. We could even have Timid Bartender,
who might want to duck behind the bar or call the cops. Whenever a verb is exe-
cuted, each of the witnessing actors consults each of the roles, asking whether
they fit that role. If the actor does fit the role, then he executes it, deciding
which of the role’s responses to choose. These decisions are made according to
the rules and actor traits specified by the storybuilder. They can take into
account details such as the properties of the stage on which the action takes
place, the props available to the actor, even the past history of the story.

A comprehensive set of screen-test and rehearsal tools in the Erasmatron
help the storybuilder assess the overall performance of the story world, identify
problem areas, and correct them.

My interactive storytelling technology has not attracted much attention. I
believe that its complexity drives people away. Most people are still hopeful that
interactive storytelling can be achieved by some reasonably simple technology;
the gargantuan intricacy of the Erasmatron is more than they are willing to
tackle. Most people sidle up to the problem, bash their heads into it for a while,
and then give up, only to be replaced by a new generation of naïve hopefuls. I
started bashing my head against the problem much earlier than others and am
blessed with a harder head; I was therefore able to bash my way through to a
solution. When the demand for interactive storytelling grows strong enough,
and enough heads have been bashed, people will hitch up their belts, take a
deep breath, and reluctantly return to my hairy technology. As I write these
words, my patent still has another 12 years. I can wait. In the meantime, you can
look up my stuff at www.erasmatazz.com.

6490 AID Chapter 28  10/21/02  1:27 PM  Page 346



29
S U B J U N C T I V I T Y

Language is a vehicle of thinking. Natural language is
clumsy with subjunctive thinking. Interactivity provides

a language that supports subjunctive thinking.

Let’s hearken back to Chapter 25 with its silly story of the history of
interactivity. Let’s try it again, only this time with a different emphasis and style.

Imagine that you are Mother Nature playing around with your first little ani-
mals. Since they have to move around, you need a control system to make cer-
tain that the legs all operate in the correct order. That’s pretty simple: a string
of neurons controlled from a central point, sending the appropriate messages at
the appropriate times. This is simple motor output control.

Your next big step is the addition of sensory inputs to the control process.
It’s easy to see how this evolved from small beginnings. The simplest version
would be pain reception, which is nothing more than the final high-frequency
squawk of a fatally damaged neuron. You simply establish than any saturated
response (lots of spikes coming down the axons at the maximum frequency)
constitutes a pain input, and your critter will respond to this with some sort of
cathartic behavior (run! jump! jerk away!) This is a reliable system; it ensures
that almost anything that’s too much to handle (too much light, too much heat,
too much pressure, too strong an odor) will trigger the pain response and a
quick reaction.

6490 AID Chapter 29  10/21/02  1:28 PM  Page 347



348 Chapter 29

Later, you can improve this system with specialized sensory receptors. You
could attach a single photoreceptor neuron to the top of the head, and when it
signals a sudden decrease in light input (possibly caused by the appearance of a
large predator), your critter will scuttle away quickly. Later again, you could add
more photoreceptors, and then optical imaging systems—which, of course,
require more neurons in the brain to process all those images—and then other
sensory inputs (auditory, olfactory, temperature, and so on).

The basic structure of your nervous system design is still pretty simple: a
bunch of sensory inputs feeding into a bunch of motor outputs. But as your
design grows, you encounter a new problem arising from its greater complexity:
how do you process the more complex sensory inputs? After all, a sensory input
of an object moving in your critter’s visual field could be a predator, or it could
be prey. How do you distinguish different responses based on subtle differences
in sensory input?

This is, at core, a problem in pattern recognition. One pattern of inputs
indicates prey, another pattern of inputs represents predator, a third pattern of
inputs suggests a potential mate. You need a system for recognizing subtly differ-
ent patterns and responding to them appropriately. The solution to this prob-
lem is the neural net, a group of neurons with multiply connected dendrites,
multiple inputs, differential thresholds, and so forth. Such a structure can easily
handle pattern recognition problems—and that, in fact, is what evolved.

This basic design takes you up through the reptiles, and it is wondrously
effective. It can even handle a modicum of learning, in a highly condensed
form. The trick here is to take all experiences and categorize them into a small
set of operationally meaningful groups. For example, if your dinosaur tugs on a
tree limb and hears it crack and nothing happens, then there’s no reason to
store that data. But suppose that the dinosaur tugs on the tree limb, hears it
crack, and then suffers a blow to the head from the broken limb. The cracking
sound is associated with pain—that’s operationally meaningful, so it stores the
cracking sound into a category that should cause it to flinch or respond cau-
tiously. Call this category fear. Perhaps I am overrating the dinosaur’s mental
capabilities by attributing such an emotion to him. If that bothers you, you can
call it proto-fear, dinosaur fear, or sub-fear. There will be lots of other experi-
ences that go into the same category with the limb cracking sound: the image of
a big predator, a cliff as seen from the top, a poisonous animal. The dinosaur
doesn’t have to engage in complex reasoning: the sensory pattern triggers the
fear response, which then triggers the appropriately cautious behavior. The
same thing would apply to other proto-emotions, such as lust, hunger, anger,
and so on.

In other words, emotion is a primitive system for learning. Instead of having
to memorize all of its experiences, the critter simply extracts the few features
that are important for its survival and throws away everything else. This highly
boiled-down, digested memory of events is emotion.

This idea rings true for me because of my work with interactive storytelling.
I have spent years struggling with the problem of how characters remember the
events of the story. It is possible, of course, to take a brute-force approach and
have the characters remember everything, but I have found this method clumsy

6490 AID Chapter 29  10/21/02  1:28 PM  Page 348



Subjunctivity 349

and wasteful. I can build a huge database of all the events in the story, but it is
rarely consulted by the characters; this bothers me. What I’d like is a system that
saves only the significant events; this would be faster to process and less wasteful
of memory. Over the years, I have developed a multilevel system in which one
level is emotion, a highly digested form of memory. All experiences go through
the emotion processor and contribute to its memories; particularly significant
events are given more detailed treatment.

Note, however, that if I didn’t have much RAM, I’d have to rely on the emo-
tional system exclusively. In the same way, the dinosaurs didn’t have enough
neurons to waste on detailed memories, so they developed the more efficient
system of emotion. It was a great idea, and in fact it worked superbly. If it hadn’t
been for that damn asteroid, they’d still be running the show. There is no indica-
tion that brain size increased during the age of dinosaurs. They had a system
that worked, and there was no point in changing it.

At this point, the mammals, losers and wimps though they were, took cen-
ter stage. Along with various special traits, the mammals brought one special
new idea to life’s party: bigger brains with a completely new conceptual
approach to processing—sequential thinking.

It’s difficult for me to articulate just how tricky and special sequential think-
ing is. We take it for granted and love to disparage it as “linear thinking,” but in
fact sequential thinking is intricate business. I first sensed this when I began
playing with digital electronics some 25 years ago. It was trivially simple to set
up circuits that could handle direct stimulus-response relationships; you just
slapped some gates together in whatever complicated pattern you desired. Yes, it
could get messy, but in design terms it was easy to understand. Then came the
day I tried to design a circuit that would process a sequence of bits coming
down a wire. All of a sudden, life became vastly more complicated, because the
circuit loses its instantaneous stimulus-response nature. You have to define a
starting point for the sequence. Then you have to collect the first bit of informa-
tion. Then you have to store that information. Then you have to wait for the
next bit of information. How long should you wait? How do you decide when
you’ve waited too long? What if the second bit of information comes in fast, but
the third comes in slowly, and the fourth comes in fast? How do you handle
such complexities? Meanwhile, you have to store all the incoming information in
a convenient place and then bring it back out when it has been assembled. From
this point, things get simpler: once the information is all lined up properly, pro-
cessing it is just a straightforward pattern recognition issue. But getting it lined
up in the first place is the trick.

Fortunately, this system can be built on top of existing pattern recognition
neural circuitry. In other words, you can start with a conventional reptilian pat-
tern-recognizing brain and add just a little bit of sequentializing circuitry, and all
that sequentializing circuitry has to do is line up a temporal sequence of informa-
tion into a spatial pattern and then hand the pattern off to the regular pattern-
recognizing circuitry. With just that incremental improvement on the reptilian
brain, all sorts of new behaviors become possible. For example, suppose that I
am a small, wimpy mammal, and a big, nasty predator lunges at me. If I had
nothing but direct pattern-recognizing circuitry, I’d have a tough time escaping,

6490 AID Chapter 29  10/21/02  1:28 PM  Page 349



350 Chapter 29

but with just a little sequential-processing capability, I have a big advantage: I can
process momentum. Suppose that the predator is on the left side of my visual
field, and I note that he is moving fast toward the right side of my visual field. By
comparing the information on his previous position (left side) with his current
position (right side), I can infer that he has lots of momentum toward the right—
so if I zag to the left, I can probably shake him. The reasoning process need not
be so academic, but the trick hinges on my ability to compare past information
with current information: sequential information processing.

Well, if a little is good, then more must be better, right? That’s what natural
selection seemed to tell the mammals, because they started growing larger cor-
texes with greater sequential-processing capabilities. Mammals can remember
route information, taking circuitous paths around obstacles to reach their desti-
nations; this is an example of more complex sequential thinking. Then the mam-
malian predators pushed the envelope even further, inventing the concept of
the hunt as a complex sequence of steps culminating in dinner. If you have any
doubts as to the ability of mammals to engage in sequential thinking, just watch
a cat stalk and capture its prey sometime. There’s some pretty complicated
sequential thinking going on in that furry head. Even more fascinating is the
complex interaction between mammalian predator and mammalian prey. From
stalking and evasion to the chase, the process is loaded with complex mental
twists and turns as each tries to anticipate the opponent’s move and counter it.
By contrast, the mammalian hunter’s relationship with reptilian prey is much
simpler: the prey’s defense lies in venom, camouflage, inaccessibility, or speed.
There’s nothing like the death dance between coyote and jackrabbit. And rep-
tiles themselves don’t hunt in the formal sense; that’s too sequential. They wan-
der around looking for an opportunity, and when they come across one, they
strike; that’s all.

Then came the primates, and they apparently “decided” to invest a higher
percentage of their biological capital into even bigger brains. This gave them
the capacity for more complex social structures than any of the other mammals
had, which, in turn, gave them a competitive advantage. With the hominids, we
saw the first evidence of tool use. Pause for a moment to consider how utterly
alien tool making is to pattern recognition. It’s not as if you can look at a chunk
of flint and see cleanly scraped animal hides incipient in it. You have to think in
a long, long sequence about how you could chip the flint to make it sharp, then
carry the flint to a freshly killed animal, and then use the flint to scrape the
meat off the hide. Moreover, you must anticipate doing this many times, for the
very essence of a tool is something whose capital cost to create exceeds the
return from a single use. This is highly sequential thinking!

Well, the cortex that handles all this sequential thinking just kept growing
and growing, allowing more and more complex sequential thinking. Indeed, the
growth of the human cortex over the past 3 million years can best be described
as an explosion. It happened so fast that we just didn’t have time to adjust to it.
Look how the female pelvis has been rearranged to get that big fat head out of
the womb at birth—what a pain! Human females don’t walk, they kind of
galumph along. High-heeled shoes are sexy because they accentuate the natural
ungainliness of the female gait, which in turn is the direct result of our big

6490 AID Chapter 29  10/21/02  1:28 PM  Page 350



Subjunctivity 351

heads. If we had small heads, high-heeled shoes wouldn’t be sexy. Therefore, if
you’re female and are abducted by aliens, and they have big heads (as aliens are
wont to do), just put on some high-heeled shoes to drive them into a frenzy
and—on second thought, maybe that wouldn’t be such a good idea.

Sequential thinking had many other manifestations for human adaptability.
One of these, probably the most important adaptive trait, lay in more complex
social structures, which were able to take on a more complex temporal dimen-
sion. That is, animals that have simpler brains build their social structures on a
here-and-now basis: mate selection turns on immediately observable traits; social
cooperation has no deferred or delayed elements. But hominids were able to
build social structures that were more adaptable because they could extend over
a longer time period. For example, altruistic behavior can sometimes take the
form of deferred reciprocity. I’ll give you some of my food today in the expecta-
tion that someday, when you have food and I don’t, you’ll return the favor.
Another example comes from leadership: in most ape societies, leadership is
assigned on the basis of simple, immediate dominance, but as the hominids
developed, they were able to recognize the value of granting leadership to older,
more experienced, but physically weaker individuals. Again, this is a reflection
of the adaptive utility of extended sequential thinking.

But far and away the most significant factor in the cortical explosion had to
be the development of language. Language is the basis of culture and the
medium for modulating complex social relationships; its development by
humans is the most significant milestone in the advance of human cognition.
But we must not think of language development as a single point in the evolu-
tion of human cognition, for in fact the creation of language triggered changes
in human society and mind that have reverberated right up until the present
day. We are still working out the consequences of language.

Okay, so now we’ve got humans talking to each other, regulating their social
interactions, and developing culture that they transmit through the generations.
The next step is the expansion of languages. Clearly, we didn’t jump from “Ook
ook gronk” to “The quality of mercy is not strained” in one step; language had
to develop from the simple to the complex. Along the way, though, the brain
had to expand its capabilities to support ever more complex linguistic struc-
tures. First there were problems of parsing complex sentence structures (for
example, “That, sir, is an insult up with which I will not put”). There was also
use of indirection via pronouns, as well as indirection through abstraction (for
example, chair < furniture < object or cat < mammal < animal). We also had to
cope with contextually parsed utterances (sentences that make no sense until we
add other information, such as “My marriage ended when I came home with lip-
stick on my collar”). All these elements had the twin effect of extending the
power of language while demanding ever more cortical resources. Skulls bal-
looned, women groaned, and humanity marched onward.

The next measure in this bolero was agriculture and urbanization. Poof,
now we’ve got civilization. But urbanization required food collection and trans-
port, and as anybody who’s dealt with the postal service knows, things some-
times get lost in transit. When those things are valuable, they can disappear all
the more easily. So here we have some early Mesopotamian city surrounded by

6490 AID Chapter 29  10/21/02  1:28 PM  Page 351



352 Chapter 29

its hinterland of farms. The farms feed the city under some set of social rules
(for example, “Your barley or your life!”). How does this system ensure that
what the farmer sends actually gets to the city rather than the stomachs of the
intermediaries?

This was a dumb little problem, one of those bureaucratic stumbling blocks
that irritate great minds and delight petty ones. The solution was appropriately
small minded: the bill of lading. Along with the shipment, you send some device
that declares the goods being shipped (“three goats, five bushels of barley, one
ox”). Then you sign it with some difficult-to-reproduce mark. The recipient
checks the consignment against the bill of lading—well, it’s pretty obvious.
Initially, that bill of lading might be just a set of pictures with hash marks. After
you’ve done this a few hundred times, though, you start to get sloppy with your
artwork. That ox you drew becomes simplified to an ox head and then to a tri-
angle with projecting horns (that, in fact, is the genesis of our letter A—just turn
it upside down, and you can see the ox head with horns).

I won’t go into any more details; suffice it to say that writing emerged from
this dumb problem. But there was one hitch: writing in those early days was
morphemic (each symbol stood for a complete word). There were no alphabets—
which meant that you had to memorize the symbol for every word in the written
language (sort of like the command sets for much of our computer software).
Initially, there were only a few dozen words, and the system worked fine. But
people kept wanting to write down more of the words they spoke, and the new
symbols bred like rabbits. Pretty soon, you had to memorize hundreds or even
thousands of little icons in order to read. What a pain! Because this process was
slow and clumsy, it devolved to an elite group of highly trained scribes (like
today’s programmers), and writing itself was confined to only the most neces-
sary functions: social coordination at a distance, record keeping, and so forth.

Then some Semitic hacker in a garage invented the alphabet, and every-
thing changed, because now anybody who could pronounce a word could spell
it, and therefore write it. And you had to memorize only a few dozen letters!
This was literary anarchism; the scribes sputtered indignantly, clung to their
morphemic writing systems, and went the path of IBM, Burroughs, and CDC.
Tough luck, guys.

Meanwhile, the scruffy alphabet users weren’t exactly burning up the road.
As I explained in Chapter 25, the Greeks were the first group to break writing
out of its hacker-created rut. And that, in turn, led to something altogether new.

To understand that new something, you must first appreciate one of the
fundamental weaknesses of the spoken word. The problem is not in the spoken
language itself but rather in the neural circuitry we use to process it. We have all
this of great dedicated brain matter that successfully parses complex sentences
with astounding speed—but it seems to be optimized for processing one sen-
tence at a time. It’s as if the sentence is the basic chunk of linguistic thought.
You can recognize this sentence instantly wrong. But if you link two good sen-
tences together in a non sequitur, the recognition of that non sequitur is idio-
syncratic.

Ahem.

6490 AID Chapter 29  10/21/02  1:28 PM  Page 352



Subjunctivity 353

We are all acutely aware of this weakness in our linguistic processing; some-
times we use it to our advantage. The colloquial expression for this stunt is “the
primrose path.” How many times have you entered into a discussion with a per-
son who starts off with a seemingly reasonable proposition, but then leads you
down a primrose path, with one seemingly reasonable intermediate conclusion
following another, until you reach an endpoint that you find completely objec-
tionable? You’ve been had! Used-car salesmen and politicians are particularly
good at this.

Because we’ve had this done to us many times (and we’ve done it to others,
too), we don’t trust the spoken word very far. Sure, I’ll trust a short, simple
statement, but if you start walking me down a long primrose path, I’ll get suspi-
cious. Indeed, the longer the primrose path, the more suspicious I become. It is
entirely possible to create verbal analogues of those delightful M.C. Escher draw-
ings in which perspective is spread over such an extended visual area that it can
be made to contradict itself in the whole, even while maintaining the logic of
perspective in any small portion of the picture. In the same way, any long verbal
exposition can microscopically appear perfectly logical, while still contradicting
itself in the whole.

Our skepticism is healthy, but it robs us of intellectual depth. If you can
trust me for only a sentence or two, then we can’t explore ideas deeply, can we?
Consider, for example, Darwinian evolution. If Charles Darwin had been con-
fined to explaining his entire idea orally, nobody would have understood or
believed it—it’s just too long and deep an idea. You can’t handle big, compli-
cated ideas with the spoken language.

Now let’s turn that around and look at it from the other direction. Imagine
what happened when the Greeks started writing about things. The written word
is subject to more rigorous analysis than the spoken word, for the simple reason
that you can go back and cross-check sentences against each other. If someone
leads you down the primrose path, you can go back and reread the exposition,
examining it critically for the sloppy logic or the tricky wording that permits the
deceptive shift in meaning.

Because of this, you can have more confidence in the reliability of the writ-
ten word. You can trust it more because it’s subject to accountability. And this
greater level of confidence permits writers to make longer logical forays, to
explore ideas more deeply, to journey further into the world of ideas.

This was the basis of the cultural and intellectual explosion that was classi-
cal Greece. Have you never wondered why the Greeks seem to have started
everything? I believe that it’s because they had the first long-range intellectual
tool: writing. The Greeks did to ideas what Henry the Navigator did to oceans.

You can see it in the Socratic dialogues. They all have the same pattern:
here’s Socrates and his straight man. Socrates starts off with a proposition that
the straight man challenges. Socrates then leads him down the primrose path,
asking the straight man to verify the correctness of each step in the process. The
straight man’s contribution to the process is never more than a sequence of
affirmative responses to Socrates’ requests for confirmation. When they reach
the end of the primrose path, the straight man always slaps his forehead and

6490 AID Chapter 29  10/21/02  1:28 PM  Page 353



354 Chapter 29

exclaims, “Golly gee, Socrates, I would never have thought that, but you sure
proved it! What a surprising result!”

What strikes me about these dialogues is the giddy sense of excitement at
the intellectual discoveries being made. Plato gets full of himself sometimes, all
but congratulating himself on his cleverness. Clearly, this was new territory to
the Greeks, and they reveled in the discovery.

The other striking observation is the merely exploitative nature of subse-
quent work. The Romans added a bit to the Greek cultural heritage, but the
Roman contribution looks like little more that tidying up, filling in some loose
details. We were well past the Renaissance before we started to make fundamen-
tal additions to the Greek foundations.

Thus, writing changed the way we thought. Don’t think of it as a means of
recording ideas; think of it as an instrument for exploring and examining ideas.
Civilization grew from the heady exploitation of this instrument of thinking.
Indeed, the written page can be thought of as artificial cortex, a technological
means of augmenting the expansion of the sequential-processing portions of the
brain. We humans were so impatient to grow more cortex, we went ahead and
concocted an artificial version: paper and ink.

Misogyny and Sequential Thinking

A sidebar on Western misogyny sheds additional light on the nature of the revo-
lution. All of the civilizations of the Greco-Roman era placed women in a sec-
ondary role, but Western civilization added an edge to the relationship. Was it
due to some special nastiness on the part of Greeks and Romans? I think not,
for Western misogyny survived Greco-Roman culture. The Christian church in
the first few centuries approached gender issues with something like benign
neglect, but the later church showed sharper anti-female prejudices. Why?

I think that the answer lies in the Western exaltation of reason. Recall from
earlier parts of this chapter my observation that there are two fundamentally dif-
ferent types of thinking, the pattern-recognizing style of the earlier brain, and
the sequential style of the outer cortical regions of the brain. Remember that
writing was an extension of this sequential-processing system. And sequential
processing was the underlying cause of the explosion of Western civilization. It
therefore makes perfect sense that the people behind that explosion would ele-
vate sequential reasoning to the highest possible status. You can see it in their
philosophical writings. I can quote most readily from Erasmus, but many of his
comments echo the classical philosophers. Erasmus’s writings bristle with
demeaning comments about women, yet when called upon to address women
specifically, he demonstrates sensitivity, sympathy, and a remarkably liberated
attitude. I had long struggled to understand the contradiction between his
clearly declared respect for women and his frequent disparaging potshots. But
there is a pattern: Erasmus the woman hater always refers to women in terms of
their anti- rational behavior. He writes that somebody is “no better than an
unreasonable woman,” “just a silly woman,” “possessed of a more-than-female
irrationality.” It’s not women that Erasmus is disparaging; it’s anti- rational
behavior. He just uses women as the personification of such behavior.

6490 AID Chapter 29  10/21/02  1:28 PM  Page 354



Subjunctivity 355

Female social roles have long emphasized the interpersonal universe,
whereas male roles have tended more toward the physical universe. The vast
complexity of social interaction is more aptly handled with the pattern-recogni-
tion style of thinking. But the physical universe is more readily understood with
sequential logic. Thus, men in Western civilization tended to emphasize sequen-
tial thinking, whereas women were stronger in pattern-recognition thinking. But
remember: the underlying cause of Western success is sequential reasoning. If
we exalt such reasoning, we concomitantly demean women. By celebrating our
greatest successes, we trashed women. Oops.

Yet the exaltation of sequential thinking was the crucial step in the develop-
ment of Western civilization. Our forebears had a fight on their hands: the
human inclination is to rely on an ill-defined combination of sequential and pat-
tern-recognition thought. The mongers of superstition, emotionalism, and trib-
alism could not hold their own against this rigorous style of thinking, so they
resisted the change at every turn. This in turn evoked a combative response
from the proponents of sequential thinking, which was often applied with too
broad a brush. The sequentialists eventually won: the central value of Western
civilization is the belief in a disciplined adherence to sequential thinking. It took
a lot of hard PR work, but the point was won.

So now our story has come to the Renaissance. The developments that I rec-
ognize as important are all extensions of the process of writing: the invention of
the printing press, of course, but also the whole concept of scholarly collabora-
tion through publication of ideas. Later came the creation of secondary forms of
writing: arithmetic notation, the use of Arabic (actually, Hindu) numerals, and
the creation of musical notation. All these innovations extended the intellectual
power of the writing instrument. And ideas began piling up on each other.

Once books became cheap enough for everyone to own a personal library,
our thinking processes altered again. It was no longer necessary for people to
cram their heads full of all the details of their existence; they could keep the
requisite books on their bookshelves and refer to them as needed. It’s difficult
for us to appreciate just how much this has changed our mental habits. A few
centuries ago, a person’s intellectual prowess was measured by the amount of
learning stuffed into his head. Nowadays, the most everyday office worker daily
works with a larger database of facts than the greatest intellectuals of the
Renaissance. With phone books, dictionaries, computer manuals, maps, and the
wide array of specialist reference works each of us uses, we sit atop a mountain
of information. We don’t bother learning most of it by heart—all we need know
is where to look it up. The confidence that gives us permits each of us to oper-
ate over a wider intellectual range. The secretary can spell check the boss’s let-
ter, the engineer can prepare a visual presentation, the carpenter can whip up
an invoice for work performed. Some of this benefit, of course, comes from
computers, but the deeper cause is the ease with which each worker can access
the information necessary to carry out the foreign task. Even today, writing con-
tinues to change the way we think.

6490 AID Chapter 29  10/21/02  1:28 PM  Page 355



356 Chapter 29

Here We Go Again

We’re about to start the whole process again, only this time the trigger is not
writing, but the computer.

What is the real significance of the computer? Is it a monstrous number-
crunching machine, cold and inhuman, ready to obliterate humanity for compu-
tational convenience, as we pictured it in the 1960s? Is it a source of cheap
thrills as a videogame machine, as we saw it in the 1980s? Or perhaps an office
machine, a glorified typewriter? Just what is this thing, anyway?

I’d like to turn the picture upside down and suggest that we’re asking the
wrong question here. Imagine yourself in 1469, examining one of the new-fan-
gled printed books, trying to divine the real significance of the technology. You
might be tempted to focus your attention on the thing itself, the physical entity
of the printed page, but you would be wrong. The importance of printing was
not in the printed page itself, but rather in the ideas unleashed by the printed
page, in the way it changed our thinking. In the same way, when we wonder
about the significance of the computer, we are misplacing our attention. The
computer is just the paper onto which and with which we write; it is no more
important than the paper onto which Gutenberg printed his first Bible.
Necessary, yes—but not the essence of the revolution. What was important about
printing was the gathering, dissemination, and group discussion of ideas. 

Computers are also changing our culture, but in a profoundly different way.
I’m not talking about email, the Internet, word processing, or any of the other
wonders of the last few decades; the truly important change is the way our
thinking is changing as a result of our use of the computer.

Just as writing started as the preserve of a small group of highly trained
scribes, so, too, has computer programming been the preserve of a small group
of highly trained programmers. Just as the alphabet opened up the world of
writing to the community at large, I expect new forms of interactive communica-
tion to open up programming to all computer users. Of course, such program-
ming will not be able to hold a candle to the real programming that Real
Programmers do. They will sneer at the new stuff in much the same way that
the scribes dismissed the alphabet. Where writing gave us vastly increased power
with sequential thinking, programming will give us vastly increased power with
subjunctive thinking: the consideration of a problem or issue in terms of many
possibilities.

Subjunctive thinking is one layer of thought more abstract than sequential
thinking. In the latter, you lay out a long thread of ideas in order, arriving at
some result or conclusion. In subjunctive thinking, you lay out a great many
threads, all of them converging on the issue at hand, but each taking a different
path. One’s conception of truth morphs in subjunctive thinking into a more
complicated being. Truth is no longer a simple matter of truth or falsehood; it
is more a set of related conditional statements.

Our natural talents for subjunctive thinking are limited; we can keep only so
many threads in our head at one time. But our talent for sequential thinking
was limited to the length of a sentence, and writing allowed us to extend our
sequential thinking to many sentences. In the same way, computer program-
ming allows us to handle more threads.

6490 AID Chapter 29  10/21/02  1:28 PM  Page 356



Subjunctivity 357

Let me present an example of subjunctive thinking at work. Suppose that
you are the manufacturing manager for a high-tech factory, and the boss sends
you a memo instructing you to reduce your budget by 20 percent. The old,
sequential way of responding to that memo might look like this:

Dear Boss:
Your request that I reduce my budget is not workable. If I lay off some of
the line workers, our output will not keep up with demand. If I cut
down on electricity, the machines that make the product won’t work. . . .

Suppose, however, that you simply sent her your budget spreadsheet with
a note:

Please examine this spreadsheet for unnecessary expenses. If you
experiment with a variety of budget-reducing scenarios, you’ll quickly
see how little fat there is in the budget.

This is a much superior communication. Instead of butting assertions with
your boss (“You can easily cut 20 percent of our of your budget.” “Can not!”
“Can so!”), you can put the issues directly in her lap and let her experience the
problem directly. When you try to communicate the ideas in English, you get a
long collection of statements beginning with “If . . . ,” most of which won’t inter-
est your interlocutor.

People are already doing this, and it certainly changes the way they work,
but the effects have not sunk in yet; we have yet to change our habits to exploit
this new capability. Moreover, we can do this with only a limited number of
problems: spreadsheets, documents, and so forth. But the concept can be
extended much further. For example, there is a weakness in sending the budget
to the boss: the spreadsheet doesn’t address the efficiency of the operation. The
boss could easily argue that cutting one manufacturing engineer out of the
operation would not significantly affect the manufacturing process. You would
demur, and there you go again, butting heads.

To solve this problem, you need a new kind of document, a subjunctive doc-
ument for your manufacturing process. Think of it as a spreadsheet for how the
product gets built. This document would show how everybody’s work fits
together, what the dependencies are, and so forth. If you could create such a
document, and then you could hand it off to your boss and show her how the
loss of the manufacturing engineer would affect the entire operation.

Such a technology would not eliminate arguments; every simulation, model,
or construct is based on assumptions. Certainly, two workers arguing over a pro-
posal could each prepare a simulation showing why his or her own position is
superior. But this way, the argument would be shifted from idiosyncratic partic-
ulars to the assumptions underlying the simulation—higher, more abstract princi-
ples. And it’s always more productive to debate principles than particulars.

So here we have in programming a new language, a new form of writing,
that supports a new way of thinking. We should therefore expect it to enable a
dramatic new view of the universe. But before we get carried away with wild

6490 AID Chapter 29  10/21/02  1:28 PM  Page 357



358 Chapter 29

notions of a new Western civilization, a latter-day Athens with digital Platos and
interactive Aristotles, we need to recognize that we lack one of the crucial fac-
tors in the original Greek efflorescence: an alphabet. Remember: writing was
invented long before the Greeks, but it was so difficult to learn that its use was
restricted to an elite class of scribes who had nothing interesting to say. And we
have exactly the same situation today. Programming is confined to an elite class
of programmers. Just like the scribes, they are highly paid. Just like the scribes,
they exercise great control over all the ancillary uses of their craft. Just like the
scribes, they are the object of some disdain—after all, if programming were that
noble, would you admit to being unable to program? And just like the scribes,
they don’t have a damn thing to say to the world—they want only to piddle
around with their medium and make it do cute things.

My analogy runs deep. I have always been disturbed by the realization that
the Egyptian scribes practiced their art for several thousand years without ever
writing down anything interesting. Amid all the mountains of hieroglyphics we
have retrieved from that era, with literally gigabytes of information about gods,
goddesses, pharaohs, conquests, taxes, and so forth, there is almost nothing of
personal interest from the scribes themselves. No gripes about the lousy pay, no
office jokes, no mentions of family or loved ones—and few discussions of philos-
ophy, mathematics, art, drama, or any of the other things that the Greeks blath-
ered away about endlessly. Compare the hieroglyphics of the Egyptians with the
writings of the Greeks, and the difference that leaps out at you is humanity.

You can see the same thing in the output of the current generation of pro-
grammers, especially in the field of computer games. It’s lifeless. Sure, their
stuff is technically good, but it’s like the Egyptian statuary: technically impres-
sive, but the faces stare blankly, whereas Greek statuary ripples with the power
of life.

6490 AID Chapter 29  10/21/02  1:28 PM  Page 358



Subjunctivity 359

What we need is a means of democratizing programming, of taking it out of
the soulless hands of the programmers and putting it into the hands of a wider
range of talents. What we need is analogous to an alphabet. In other words, we
need some means of making programming accessible to people without requir-
ing years of training. This idea is not at all new; people have been designing pro-
gramming languages for beginners for decades. BASIC, Logo, Pilot, and
Smalltalk are just a few of many such efforts, none of which has ever amounted
to much. So why am I dragging out this dead horse for further abuse?

I think that the failures of the past arise from an underestimation of the
amount of computer resources required to support the nonprofessional user.
Here we come to a fundamental difference between computer writing and
paper writing: computer writing is executed on a computer, whereas paper writ-
ing mirrors speech. Because computer writing must be executed on a computer,
it is constrained by the limitations of the computer, and it must also consume
some portion of the computer’s resources. In times past, computer resources
have been so limited that we could not afford to allocate much to the program-
ming language. This is why we used low-level languages such as assembly lan-
guage and C. But computers have grown vastly more powerful in the past
decade. My current computer is about 2,000 times more powerful than the com-
puter I used just 15 years ago. Yet the programming language I use on it, C++,
does not consume 2,000 times more computer resources; I’d guess that it eats
up maybe 50 times more resources. It’s as if we were ditch diggers who’ve been
using shovels all our lives, and one day we receive a shiny new bulldozer with the
horsepower to do the work of a thousand shovels—but the blade on the front of
the bulldozer is only three feet long, and so we can do only as much work as 50
shovels. What a waste!

Alan Kay once observed that, with the 8 -bit machines, 90 percent of the
computer’s power was used up doing the work, and only 10 percent was avail-
able for making the user interface more effective. He allowed as how computers
wouldn’t get useful until those percentages were reversed. Well, we should have
reached that point by now. If our computers of today are a thousand times more
powerful than the 8 -bit machines, then we could have 10 times the raw comput-
ing power of those old machines and still have 99 percent of the computer’s
resources available for user interface. This, I think, is the biggest failure of the
computer industry: the standards of user interface quality have gone up by a fac-
tor of 10 while the basic hardware has improved by a factor of 1,000. Windows is
nice, but it doesn’t go far enough. We’re way behind the curve.

So if we are to design a programming language for normal people, using
modern computers, we want something far more glorified than BASIC, Logo,
or even Smalltalk. This new language should be more removed from the mathe-
matical constructs of conventional programming and closer to the grammatical
constructs that we understand from natural language.

So how will we concoct such a language? I see two possible strategies; I
don’t know if either one will work. The first strategy is to build a series of small,
special-purpose languages for single applications. We don’t try to tackle some
high-falutin general-purpose language; instead, we just build a bunch of narrow-
purpose languages for particular tasks. We already have some of this in macro

6490 AID Chapter 29  10/21/02  1:28 PM  Page 359



360 Chapter 29

or scripting languages. As the years go by, we allow Darwinian factors to select
the better language traits. Within a decade or so, perhaps we will be in a posi-
tion to talk about designing a general-purpose language. 

The other possibility is to simply make programming a necessity. I think
that Apple has taken a good baby step in this direction with its AppleScript lan-
guage. This is a general-purpose programming language capable of handling
many of the mundane tasks of computing. Nevertheless, even AppleScript seems
too steep for most users. Perhaps something founded on the Basic English pro-
posal I offered in Chapter 22 might provide a gentler beginning.

Before you dismiss my demanding attitude as out of touch with reality, con-
sider this: we now require our children to undergo years of tedious training to
learn to read and write. It truly is a huge investment, reading—wouldn’t it be
wonderful if we could skip the effort? Sad to say, that’s just not possible: every
citizen must learn this tool so fundamental to our civilization. It demands a
great deal of effort to learn, but the rewards are well worth it. Someday soon,
programming will be just as important.

6490 AID Chapter 29  10/21/02  1:28 PM  Page 360



30
F U T U R E S

My own prognostications on the interplay of interactiv-
ity, society, and technology.

The computer revolution is, without doubt, the most dramatic
jump in human history. This is an extreme statement, but I make it with

due regard for the vastness of human history. Perhaps I can justify my wild claim
with some rough quantifications. Let’s start with one of the seminal technologi-
cal events in human history: Gutenberg’s invention of the printing press. The
significance of this technology was that it replaced hand-copied books with
much cheaper printed books. The reduction in cost made books available to
many more people and thereby triggered huge changes in society. Yet the actual
reduction in cost was only about a factor of 10. True, the beautiful illuminated
manuscripts of the early fifteenth century were hugely expensive, but it’s not
fair to compare an illuminated manuscript with a printed book. For similar stan-
dards of quality, the price ratio was about 10 to 1. 

Another big technological revolution was the Bessemer process for mass-
producing steel. This lowered the cost of structural steel by roughly a factor of
3; as a consequence, cities all over the world leapt skyward, breaking the old
three-story limit imposed by stone. Within a few decades, skyscrapers were
stretching hundreds of feet into the air.

6490 AID Chapter 30  11/2/02  7:19 PM  Page 361



362 Chapter 30

In this century, the Green Revolution of the 1960s is certainly impressive. A
combination of hybrid seeds, fertilizer, and pesticides dramatically increased
crop yields. The overall improvement is tricky to estimate because of uncertain
assumptions about capital intensity and sustainability, but overall I’d say this rev-
olution roughly halved the price of food. Human population continued its geo-
metric growth.

In raw magnitude of technological advance, the computer revolution dwarfs
these monumental moments in human history. In two decades, I have pro-
gressed from a Commodore PET computer with 8K of RAM, an 8 -bit processor
running at 1 megahertz, a cassette drive for nonvolatile storage, and a tiny black-
and-white display to a Macintosh 8500 with 256MB of RAM and a 64-bit proces-
sor running at 230 MHz, over a megapixel of 32-bit deep color display, a
2-gigabyte hard drive, etc., etc. My Mac’s CPU is 2,000 times faster than the
PET’s, its RAM is 32,000 times bigger, its display can present about 40,000 times
as much information, and its nonvolatile storage is about 20,000 times bigger
and hundreds of times faster. Overall, I’d say that this Mac outperforms the old
PET by a factor of about 4,000, at about the same price (in constant dollars). In
only two decades, computers have improved by a factor of 4,000, and the
improvement continues unabated.

Let’s summarize these guesses in a table:

Invention Improvement Factor Results

Printing press 10 Mass literacy, Reformation, democracy

Bessemer process 3 Skyscrapers, higher urban densities

Green Revolution 2 Billions more people

Computers 42,000 Computer games

Okay; I admit that computers have, in fact, wrought gigantic changes in
society, and their power has only begun to sink in. Here are some of the factors
at work.

Technological Progress

This is the factor that everybody dotes on. Golly gee, computers just get more
and more powerful every day! The concept is formalized in Moore’s Law, which
states that computer chips will double in power for the same price every 18
months. In general, laws that involve exponential growth (as this one does) tend
to apply for only short periods of time, but Moore’s Law has been right on the
money for nigh unto 30 years now. There’s little reason to doubt that computer
technology will continue to improve, at least at an attenuated rate, into the fore-
seeable future. Surely before I die, I will own a computer a million times more
powerful than that old PET.

6490 AID Chapter 30  11/2/02  7:19 PM  Page 362



Futures 363

If this were the only factor to consider, computers and society would have a
rosy future. But there are some other factors to consider, such as:

The Perception of Adequacy

The application of technology does not slavishly follow its power curve; it is lim-
ited by the popular need for its benefits. Paper clips used to cost enough for
people to notice; nowadays, they’re so cheap that nobody pays attention to
them. If I were to invent a process that dropped the price of paper clips to one-
millionth of their current price, would you use any more paper clips than you
now use?

Let’s face it; many of the basic computer applications are already nearing
the upper reaches of their appeal. My word processor is quite good, and I’m
sure that it could be better, but if Two Jerks in a Garage, Inc. (floated on Wall
Street with an initial valuation of $20 billion), were to release a new word
processor that is undeniably ten times better than my current word processor,
would I rush out to buy it? I doubt it; my current word processor is probably
good enough.

Human Limitations on Use

When automobiles were first mass-produced, they couldn’t go fast; 5 or 10 miles
per hour was about the fastest any sane driver would go. By the 1920s, roads
were smoother, tires were better, and the typical automobile could manage 30 or
40 mph. By the 1930s, the risk of a catastrophic tire blowout and consequent loss
of control kept speeds to about 45 mph. By the 1950s, better tire designs and
wider, smoother roads had gotten speeds up to about 60 mph. But in the past 40
years, we haven’t seen much increase in typical highway speeds. Technology
didn’t stop improving: just about every component of the current technology
makes its 1950s ancestor look ancient. But the increase in average highway
speeds stopped because one component of the overall system remained constant:
the driver. Human reaction times today are no better than they were 40 years
ago, and above 70 mph, our reaction times exceed our likely warning times.

There are already a few components of computer systems that have reached
the limits imposed by human frailties. Our hands can’t handle bigger keyboards,
nor will our typing speeds improve. The color depth of most monitors now
exceeds the color resolution of the human retina. Many computer games could
easily run at speeds fast enough to seem a blur to the most hard-core
videogamer. In many other areas, of course, there’s still plenty of room for
improvement, but we must remember that the human partner in the interaction
has his own limitations.

6490 AID Chapter 30  11/2/02  7:19 PM  Page 363



364 Chapter 30

Design Expertise

The printing press reduced the price of books overnight, but it took 50 years to
sink its teeth into society. The technology to print a book comes more easily
than the talent to write one; an entire generation had to grow up with the print-
ing press before a cadre of talented writers arose to put it through its paces. The
first media superstar, my old friend Erasmus, was born several years after
Gutenberg unleashed his creation. An Erasmus could not have appeared before
Gutenberg, because there simply weren’t enough books lying around for one
person to read the entire corpus of classical literature. 

Such is surely the case with computers. We have plenty of programmers,
but our accumulated design expertise in interactivity is paltry. Consider how
poorly most workers in the industry understand interactivity; ask your colleagues
to define it, and you’ll likely get a scattershot of vague and contradictory
answers. All the computing power in the world is useless in the hands of a
Neanderthal.

Audience Development

The computer does not exist independently of its audience of users; after all,
they’re the ones paying for this revolution, and they call the shots. The capabili-
ties of the technology are constrained by the acquired skills of its users. Thus,
when personal computers first hit the streets in force in the early 1980s, a major
obstacle was their reliance on keyboards. Most of the yuppies who comprised
the initial market couldn’t type; moreover, typing was commonly associated with
secretarial work, and status-conscious executives refused to be seen using secre-
tarial equipment.

My wife provides a typical example. She first encountered computers as a
business tool in the early 80s, and she shied away from them. She would attempt
something only with me standing nearby, and then only the simplest of tasks. By
the mid 80s, she was reluctantly using my cast-off computers, hunting and peck-
ing her way through simple memos and letters. In the late 80s, she embraced
the technology, mastering spreadsheets, budget control programs, and word
processors. Nowadays, she is completely confident using a computer and types
using a hybrid of two-finger and touch typing.

It takes years for masses of people to develop the skills necessary to utilize a
new technology. Computers are particularly demanding; progress in the field
will be dictated more by audience familiarity than by technology.

Opportunistic Adjustment of Lifestyle and Workstyle

The other side of the coin is that, as people grow comfortable with a technology,
they alter their lifestyles to take advantage of it. The alteration in lifestyle modi-
fies the definition of the technology’s utility. For example, email had zero utility
to most people before, say, 1980. To whom could you write? Its communication
functions were handled by letters and telephone calls. Snazzy voicemail systems in
the 1980s made telephone calls even more useful. But email solved problems that

6490 AID Chapter 30  11/2/02  7:19 PM  Page 364



Futures 365

people had never noticed before. With email, you don’t need to waste several
minutes on personal banter before getting to the point in a business call. You can
make an exact copy of another person’s email and forward it to others as a way
of documenting your comments. You can respond to an email point by point,
referring to each item by quoting it. Since email doesn’t constitute much of an
intrusion, you can use it freely at any time for the most minor of communica-
tions. And you can send copies to lots of people with no extra effort.

Businesses have changed their social behaviors in response to this. The
chance meeting at the coffee pot has been downgraded in importance; encoun-
ters with important people at the urinal no longer offer quite the same opportu-
nities that they once did.

These kinds of changes are more important to the future of interactivity
than the technological changes. The interactivity designer must be more attuned
to them than to technical developments.

Complexity of Interrelationships

The success of email cannot be attributed to a single technology, such as email
application programs. Several technologies contributed to the universal embrac-
ing of email: local area networks, cheaper and faster modems, optical fiber (just
in time!), less noisy telephone lines, and the Internet. Had any of these technolo-
gies failed to blossom, email might not have taken off. After all, email commands
our attention only when lots of people are using it, and to convince everybody to
join the system, you have to get every individual piece working well, fast, and
cheaply. I don’t think that the success of email was credibly predictable until just
before it actually happened; there were too many contingencies.

The same thing applies in guessing the future of the revolution. Exciting
possibilities abound, but each one depends on a morass of supporting develop-
ments, any one of which could kill it before it gets started. Back in the late 70s,
the smart money said that bubble memory would sweep away rotating magnetic
media (hard disks and floppy disks), but it didn’t turn out that way, and there
are more attributable causes for that failure than there are for the fall of Rome.

Winner Takes All

Every information-based technology enjoys huge economies of scale; selling one
additional copy of the information costs you almost nothing. This confers enor-
mous economic efficiency on all information-based technologies. The downside of
these economies of scale is the winner-takes-all marketplace that naturally ensues.
The biggest kid on the block enjoys such huge economies of scale that he can put
everybody else out of business even with inferior product. The almost-textbook
example of this tendency is the triumph of Windows over the Macintosh. In my
opinion, at each point in time until the late 1990s, the Macintosh technology was
superior to the competing Microsoft product—yet the good guys (or at least the
guys with the best product) lost. There are lots of secondary reasons for Apple’s
failure, but the primary reason is simple: the Microsoft installed base was bigger
than the Mac’s installed base at every point in time. Superior product was not
enough to overcome the relentless economic logic.

6490 AID Chapter 30  11/2/02  7:19 PM  Page 365



366 Chapter 30

This unfortunate trait of the revolution throws a wildcard into its future.
Suppose that two competing technologies appear simultaneously. Suppose fur-
ther that one of the technologies is moderately superior. If the inferior technol-
ogy is better funded, it can establish a stronger initial position in the
marketplace and use the ensuing economies of scale to crush its competitor.
Thus, the future course of the revolution will be shaped at least partly by the
vagaries of funding at the expense of objective and rational factors. When you
combine this with the previous factor, you get a future whose specifics cannot
be reliably predicted.

Putting the Pieces Together

In assessing where the revolution is headed, the technological extrapolation is
likely the least useful approach. Each of the other listed factors is, I think, more
consequential to the future. The most important factor is likely to be continu-
ing adjustments in lifestyle and workstyle. This is a positive factor that will drive
the revolution onward, but to understand it, we must concentrate on what tasks
people are now handling that might be handled more easily (with some adjust-
ment in style) by the computer. We should not think in terms of the computer
taking over some existing function and performing it exactly as in the past,
only better. Email is not the same thing as a telephone call, nor is it the same
thing as a letter. 

The Short-Term Future

I will not make a fool of myself by attempting to predict specific developments,
but I will identify three developments that I think will have a great impact in the
short term. 

The first of these is voice synthesis. Already pretty good, I think it is now
poised to cross the threshold of consumer utility. By making user interfaces
easier and more natural, it will make the computer more accessible to nontech-
nical users.

Next comes voice recognition. It is not as far along as voice synthesis, but
offers greater gains in computer accessibility.

Last, and most important, is overall ease of use. Computers suck! They are
too difficult to use. This is the primary obstacle to their wider employment, and
thus overcoming it will be the primary driver shaping the future of the revolution.

The Long Term: From Computing to Interactivity

All revolutions, be they political, economic, religious, or technological, are initi-
ated by specialists and co-opted by commoners. The intensity, dedication, and
dogmatism of the revolutionaries melts into the pragmatism, diversity, and lazi-
ness of the masses. The computer revolution was launched, and is still domi-
nated, by technological revolutionaries. They are certainly intense; listen to
them gush all that techie drivel with such enthusiasm. Dedicated they surely are:

6490 AID Chapter 30  11/2/02  7:19 PM  Page 366



Futures 367

look how much they have to learn to install and use all those conflicting pro-
grams. And dogmatism is never far below the surface. Complain about the mal-
functioning of his program, and the programmer will snarl “RTFM” at you. Just
for kicks, tell a techie that you prefer the Macintosh, America Online, or BASIC;
watch how upset he gets!

But already the commoners are making some dents. It took 11 years, but
they finally dragged the techies, kicking and screaming, out of DOS and into
Windows. And the commoners are starting to realize their power: note the large
and successful line of books titled (Technical Topic X) for Dummies. The industry
makes the commoners feel like dummies—but the covers of these books all show
a defiant protester’s sign.

The vulgarization of computers will necessarily follow their popularization.
Technical values will be replaced by consumer values. Somewhere along the way,
we’ll stop calling it “computing” and give it a name that connotes its social func-
tion rather than its technical foundation. We probably won’t use the term inter-
activity; the word’s six syllables clatter off the tongue like a rickety freight train.
But the concept of interactivity will be the intended gist of our meaning. The
deepest essence of this revolution is not bytes or spreadsheets but the discovery
of a new sentient being. True, that sentience is merely a faint prerecorded echo
of the designer’s sentience, but its genealogy is as nothing compared to its
potential. This new sentient species is, in truth, just a faint image of ourselves, a
darkened window into another person’s mind—not his knowledge, but his think-
ing. This strange and wonderful species is dressed in traits we already know:
video, audio, keyboards. But the element that fascinates us, captivates us, is the
one element that is truly new and unique about it: interactivity.

Seven Lessons to Remember

1. Your software engages your user in a conversation. Your design task is to
maximize the utility of that conversation.

2. Think about that conversation in linguistic terms.

3. What are the verbs? What does the user DO?

4. Speak less, listen more.

5. Thinking is the delivered content of all software.

6. Your software should do whatever a reasonable person in its situation
would do.

7. Dactylodeiktous means “all fingers pointing at.”

6490 AID Chapter 30  11/2/02  7:19 PM  Page 367



6490 AID Chapter 30  11/2/02  7:19 PM  Page 368



Note: Italicized page numbers refer
to illustrations.

A

abort current job (ABT), 53
About Face (Cooper), 67, 122, 180
abstraction, 243–52

biological, 249–50
computational, 248–49
and educational software, 252
financial, 243–46
and interactivity design, 250
political, 246–47
and storytelling, 341–44
transforming observation into

design practice, 251
and website design, 251

ABT (abort current job), 53
accessible states, 84, 88–90, 95
actions. See verbs
active voice, 116
actors, in interactivity, 5–6
addition, 202–3
Adobe Acrobat 4.0 (program),

128–35
advancing applications

software, 175
advantages of interactivity

communicative advantages,
17–18

competitive advantage, 16–17
affective reasoning, 163
agents, 114–16
agon (competitiveness), 225
algorithms, 35–39
alternate windows, 25
Amazon.com (online retailer), 178
analog clocks, 140

animated spinner cursor, 57
animation, 24–25

as attracting annunciator, 25
facial, 25
full-motion, 26
pop-up, 25–26
temporal discontinuity, 25

animation distraction, 25
annunciation, 25, 187
ANSI standards, 285
anthropomorphization, 113–18

admitting infallibility, 117–18
being courteous, 116–17
relationship of designer with

user, 113–14
by use of agents, 114
using active voice, 116
using first and second

person, 116
using plain English, 117

anti-aliasing, 23
anticipation in interactivity

design, 303–12
designer-level of, 306
knowledge of other, 304–5
levels of, 309
privacy issue, 309–12
variations on, 306–8

Apocalypse Now (film), 43
Apple Newton (PDA), 68
AppleWorks (software), 123
application software design

convergent iteration, 173–75
user tasks and computer

actions, 171–75
applications, 82–83
approximation, 197–98
Arabic math system, 248

I N D E X

6490 AID Index  11/1/02  5:28 PM  Page 369



370 Index

architectures, 75–90
broader applications, 82–83
interactivity diagram, 76–82

combinatorial schemes, 81–82
foldback, 76
hand-wired storytree, 81
“kill ‘em if they stray”

approach, 80
obstructionist stories, 80

storytree, fullness and richness
of, 82

word processors and games
accessible states, increasing

number of, 88
conceivable states, decreasing

number of, 85–87
criterion for

excellence, 84–85
differences between, 83–90
hand-wired

branching, 81, 89–90
increasing number

variables, 88–89
replacing boolean variables

with arithmetic
variables, 88–89

using indirection, 90
arithmetic, 248
arithmetic variables, 88–89
art, field of, 330
arts/humanities vs.

science/engineering, 331–37
artsy people, 334–35

creation of algorithms by, 35
feelings toward science/

engineering, 332–33
future of, 336
need for in software

development, 335–36
recommendations for, 337
why don’t program, 334–35

technical people
feelings toward

arts/humanities, 331–32
recommendations for, 337

aspect ratio, 22
asymmetric factor, 40–42

Atari’s brainwave input device, 61
attracting annunciator, 25
audience development, 364
author, his work in interactive

storytelling, 345–46
auto-highlighting object, 56
automated interactivity, 14
automatic text fill- in, 305

B

Balance of Planet (game), 169
Balance of Power

(game), 164, 168–69
balloons, help.

See bubbles/balloons, help
bandwidth, 176
Basic English, 273
bedside clock, 140–41
bibliofind.com (web site), 72
biological abstraction, 249–50
blinking, 187
bloopers in interactivity

design, 119–37
communication failure, 128–33
delayed responses, 123–24
diagnostic messages, 127–28
differentiating processes, 134–35
habituation violation, 124–25
misfires and feedback for

recognition, 304–5
overloading web pages, 119
poorly defined task

responsibilities, 125–26
secret icons, 121–22
“stupid thinking,” 120–21
unclear values or

settings, 125–26
with videos, 120
Windows 95 example, 135–37

books, printed, 8–9
Boole, George, 274
Boolean connection schemes, 81
Boolean equation, 201
Boolean variables, 88–89, 220
bottom-up design, 32

6490 AID Index  11/1/02  5:28 PM  Page 370



Index 371

boxes
cautionary dialog box, 238
check boxes, 67
dialog boxes, 25
Document Format box, 127
Page Setup box, 127
Print dialog box, 127
scroll boxes, 124

brain to hands gap, 258
brainwave input device, 61
branching. See storytrees
“branching thinking,” 180
branchpoint, 77
break off executing current job

(BRK), 53
Bricklin, Dan, 17
brightening/dimming, 24
BRK (break off executing current

job), 53
browsing the Web, 71, 179–81
bubbles/balloons, help

accessing, 59
in AppleWorks, 123–24
improvements on, 55
and menu items, 65
overview, 25–26
vs. tooltips, 57

bureaucratic metaphor, 39
business metaphor, 38
butcons, 55–56
buttons

delayed responses, 123–24
escape button (Esc), 53
Fast button, 140
and interactivity, 50–51
on mouse, 55
pushbuttons, 124
radio buttons, 67, 124
Slow button, 140
Time button, 140
unused, 187–88

buzzers, 187

C

CAD (computer-aided drafting)
programs, 66, 171

cameras, digital, 184
caret cursors, 136
CCDs (charge-coupled

devices), 71–72
cell phones, 186–87
cerebellum, 160
charge-coupled devices

(CCDs), 71–72
check boxes, 67
checkbook balancing programs, 212
choices. See verbs
Cicero, 9
clipboard for linguistics, 278–79
clock setting, 139–47

analog clocks, 140
bedside clock, 140–41
digital clocks, 140
Macintosh, 143–44
separation of hour setting from

minute setting, 142
VCR clocks, 144–47
wristwatches, 141–42

closure, 42–44, 85
color depth, 22–23
color resolution, 22–23
color-to-dirt ratio, 88
combinatorial schemes of

storytrees, 81–82
command-line interface, 85–86
communication

See also listening;
speaking; thinking

as advantage of
interactivity, 17–18

failure, 128–33
power of indirection, 264–65

competitiveness, 225, 240–41
compression factor, 254
computational abstraction, 248–49
computed branching, 89–90
computer communication.

See communication

6490 AID Index  11/1/02  5:28 PM  Page 371



372 Index

computer input devices, 50–62
joysticks, 51
keyboards, 51–53
light pens, 61–62
mouse, 53–59
voice input, 59–60

computer operating systems, 336
computer screens.

See screens, computer
computer-aided drafting (CAD)

programs, 66, 171
conceivable states, 84–87
conquer-the-world games, 162
content expert, 150
“context-free” vocabularies, 274–75
contraction/expansion, 24
control vs. interactivity, 323–30

conflict between, 326–28
reversibility through undo, 326
shift from stories to

storytelling, 329–30
Web and division of

responsibility, 328–29
convergent iteration, 72, 173–75
convergent testing, 155
conversations with computers,

49–50. See also listening;
speaking; thinking

Cooper, Alan, 67, 122, 180
Coppola, Francis Ford, 43
costumes, 229
counting systems, 248–49
courtesy, 116–17
CPU-to-monitor gap, 256–57
Crawford, Chris, 345–46
Crawford diagram, 83
credit cards, 245–46
Creole languages, 283–86
crunch-per-bit ratio, 210–12
culture and play, 228–30
cursors, 57–59, 136, 189
custom-built web pages, 177–79
customers

and diagnostic messages, 128–29
market research, 134
mindset of, 295
privacy of, 312
purchasing games, 164–65

Cut command, 126
Cut Role, 126

D

dactylodeiktous, 367
dancing, 9
Darwin, Charles, 353
data intensity, 168, 210
data structures, 39–40, 222–23
database managers, 171, 211
database querying, 72
Death and Funeral March

(Siegfried), 36
debt, concept of, 244–45
dedicated devices, 183–89

listening tasks, 188–89
overview, 184–85
speaking tasks, 186–88
thinking tasks, 188
and user manuals, 185

defining interactivity, 5–6
degrees of interactivity, 6–8
delay time. See timing
delayed responses, 123–24
deleted menu items, 126
design errors. See bloopers
design experiments, 237–38
design expertise, future of, 364
design guidelines, 93–112

See also verbs
for educational software, 166–71

eschew exposition, 166–67
learn by playing, 169–71
process- intensive

thinking, 168–69
on egotism, 96–97
false expectations, 106–7
guarding against egotism, 96–97
offering solutions, 111–12
say what you mean, 107–8
screen windows fitting into five

categories, 108–11
speeding up software, 100–101
technology not starting

with, 95–96
timing of interaction, 97–100

6490 AID Index  11/1/02  5:28 PM  Page 372



Index 373

design limitations, explaining, 109
design process, 149–57

convergent testing, 155
empiricism, 153–54
polishing phase, 155
project team, 150–52
qualifications for designing, 152
storyboarding technique, 156–57
taking responsibility for, 149–50

design team, 150
designed languages, 273–77
designer, choosing, 149–50
designer-level anticipation, 306
designers, qualifications for, 152
desktop, 66–67
determinism, 325–26
devices. See dedicated devices;

input devices
diagnostic messages, 127–28
diagrams, architectural.

See architectures
dialects, language, 273
dialog boxes, 25, 127

cautionary dialog box, 238
Print dialog box, 127

digital cameras, 184
digital clocks, 140
dimmed menu items, 64
dimming/brightening, 24
direct approach, 266
directed graph, 216
disabling menu items, 64
discrepancy of volition, 239
distorting reality, 43
division by zero, 203–4
Document Format box, 127
Doom (software game), 323–24
DOS command-line

interface, 85–86
dpi (dots per inch), 21
Dragon’s Lair (game), 212
drawing pictures. See architectures
drop-down menus, 64
duality, 208–9
dynamic process, 208

E

early learning software, 165–66
economic metaphor, 38
educational software design, 165–71

and abstraction, 252
for early learning, 165–66
educational simulation, 165–66
eschew exposition, 166–67
learn by playing, 169–71
process- intensive

thinking, 168–69
and soft math, 199–200

egotism, 96–97
Einstein’s theory of relativity, 231
ellipsis, 63–64
email programs, 171, 300–101
emotion

human capability of, 14
impact of games, 163

emotional distance model, 38
emotional metaphor, 39
emotions

and artsy people, 332–33
conveyed by messages, 110,

237–38
in interactive storytelling

program, 198
as primitive system for

learning, 346–47
shown by facial

expressions, 255–56
and sound output, 27
in storytelling, 344

empirical design, 155
empiricism, 152–54
engineering.

See science/engineering
vs. arts/humanities

English, Basic, 273
Equivalence, Principle of, 231
Erasmatron (program)

cautionary dialog box, 238
example of little changes

triggering big problems, 107
executing interactive

storytelling, 343–44

6490 AID Index  11/1/02  5:28 PM  Page 373



374 Index

Erasmatron (program) (continued)
implementing undo-ability, 237
not allowing inappropriate item

selection, 344
problem when designing, 101
slow screen draw problem, 154
timing results, 98–99
Tinkertoy Text from, 261

Eric’s Ultimate Solitaire
(software game), 67

error messages, 234–35
errors, design, 109, 304–5.

See bloopers
escape button (Esc), 53
evolution and play, 228
executable file, 135
executives, role of, 150
expansion/contraction, 24
expectations, false, 106–7
experimentation, 95, 153–54
expression, interactivity as

form of, 15–18
expressions, facial.

See facial expressions
extending sequentiality, 68
eyeball-to-brain gap, 257–58

F

facial animation, 25
facial expressions

human brain’s processing
of, 257–58

meaning of, 46
in messages, 248

facial feature extraction, 293–94
false expectations, 106–7
Fast button, 140
Fatal Attraction (film), 343–44
“featuritis,” 106–7
federalism, 247

feedback
force-feedback mouse, 60
as necessity for interactivity, 9
sound for, 187
tactile, 189

feelings. See emotions
females. See women
fields, 39–40
files

extensions for, 135
icons for, 66, 135, 136, 307

films, 9
financial abstraction, 243–46
first and second person, 116
flight simulators, 52
foldback, 79
fonts

and algorithms, 34–35
error messages

regarding, 111–12, 132
menus for, 64–65, 266
size of, 22–23
in word processor

programs, 88–89, 266
footers, 250
force-feedback mouse, 60
formulas, soft, 197–98
frame rate, 24–25, 29
frames, HTML, 262
Frankston, Bob, 17
free will, 324, 326
frolic. See paidaia
FSFM (full-screen, full-motion)

video, 24, 26
full-motion animation, 26
full-screen, full-motion (FSFM)

video, 24, 26
future of interactivity, 361–67

audience development, 364
complexity of

interrelationships, 365
design expertise, 364
human limitations on use, 363
long-term, 366–67
opportunistic adjustment

of lifestyle and
workstyle, 364–65

6490 AID Index  11/1/02  5:28 PM  Page 374



Index 375

future of interactivity (continued)
perception of adequacy, 363
seven lessons for, 367
short-term, 366
technological progress

in, 362–63
winner-takes-all

marketplace, 365–66

G

game design, 159–65
by combining existing game

forms, 162–63
emotional effect of games, 163
hand-eye coordinated

games, 160–61
marketing constraints, 164
old designs, technological

advancement of, 162–63
puzzles, 161
resource management games,

162
women, designing for, 163
vs. word processor design, 83–90

criterion for
excellence, 84–85

decreasing number of
conceivable states, 85–87

hand-wired branching, 81,
89–90

increasing number of
accessible states, 88

increasing number
variables, 88–89

replacing boolean variables
with arithmetic
variables, 88–89

use indirection, 90
general-purpose input

scheme, 175–76
geometric growth of nodes, 76–82
geometric metaphor, 37–38
gestural input, 67–68
gizmos, 67
grabber cursor, 57
graphic artist, 150

graphic design, 12, 22, 55–56
graphical user interfaces

(GUIs), 66, 86, 263
graphs, 83
grep language, 266–67
guidelines, design.

See design guidelines

H

habituation violation, 124–25
hand-eye coordination

games, 160–61
hands to keyboard and mouse

gap, 258
hand-wired branching, 81, 89–90
handwriting recognition, 68
headers, 250
Heisenberg Uncertainty

Principle, 325
help

via agents, 114–16
via bubbles/balloons

accessing, 59
in AppleWorks, 123–24
improvements on, 55
and menu items, 65
overview, 25–26
vs. tooltips, 57

hexagonal linkmesh, 215–18
hierarchical menu, 64
Hindu math system, 248
history

of interactivity, 315–22
of language design, 273–77
of play, 227

historybooks, 222–23
Homo Ludens: A Study of the Play

Element of Culture (Huizinga),
228–29, 230, 238

hotspots, 175–76
hour setting, 142
HTML (HyperText

Markup Language)
frames, 262
limitations of, 176, 178

6490 AID Index  11/1/02  5:28 PM  Page 375



376 Index

Huizinga, Johan, 228–29, 230, 238
human attributes, enabling

computers with.
See anthropomorphization

human factors design, 11
human limitations, future of, 363
human thinking, vs. machine

thinking, 31–32
human-human interaction, vs.

human-computer
interaction, 74

humanities. See arts/humanities vs.
science/engineering

humongous heap design, 251
hyperlinks, 71, 179–81
HyperText Markup Language.

See HTML

I

iconic sounds, 187–88
icons, 136

See also tooltips
in AppleWorks, 123
for cursors, 57–59
example of problems

with, 130, 131
for files, 66, 135, 136, 307
menus for, 65
that operate as

buttons, 55–56, 288–89
unrecognizable, 121–22

ILS system, 52
images

See also animation; icons
cursors for passing over, 59
download time for, 119
pixels in, 20–22
programs for manipulating, 250
recognition of, 290–94

immune systems, 249
indentations, 250
independent devices, 184
indirection, 251–67

applying to output, 262–64
carrying across gaps, 255–59
communicative power of, 264–65

constructs, 253–54, 259
in programming, 259–62
putting to work, 266
scripting languages, 266–69

individuality, 82
inflection, in speech, 28
information contribution,

symmetry of, 70
information flow, measuring, 73
information, providing, 181–82
input devices, 50–62

input devices, 60–61
joysticks, 51
keyboards, 51–53
light pens and other

devices, 61–62
mouse, 53–59

inputting. See listening
intensity in interaction, 239
interactive loop, 69–74, 124, 160,

174, 255
browsing by hyperlink, 71
convergent iteration, 72
database querying, 72
gaps to bridge, 255–59
human-human interaction vs.

human-computer
interaction, 74

keyword search, 71
measuring information flow, 73

interactive storytelling, 327, 329,
339–46

abstracting storytelling, 341–44
author’s work in, 345–46
building a technology

for, 345–46
vs. conventional story, 340–41
technology, 221
what it is not, 339–40

interactivity, 3–18
automated, 14
competitive advantages of, 16–17
definitions of, 5–6
degrees of, 6–8
future of, 361–67

audience development, 364

6490 AID Index  11/1/02  5:28 PM  Page 376



Index 377

interactivity, (continued)
complexity of

interrelationships, 365
design expertise, 364
human limitations on

use, 363
long-term, 366–67
opportunistic adjustment of

lifestyle and workstyle,
364–65

perception of adequacy, 363
seven lessons for, 367
short-term, 366
technological progress

in, 362–63
winner-takes-all

marketplace, 365–66
graphic design and

multimedia, 12
revolution of, 14
subtasks of, 3, 5
superiority to other forms of

expression, 15–16
things that are not, 8–10
timing of, 97–100

interactivity diagram, 76–82
combinatorial schemes, 81–82
foldback, 76
hand-wired storytree, 81
obstructionist stories, 80

interactivity-based firms, 152
interface hardware, 185
interface links, 125–26
interface, user, 10–11
interrelationships, future of, 365
inverse parsing, 280–83

J

Java processing
language, 176, 178, 181

joysticks, 51
justification factor, 250

K

Kay, Alan, 7, 359
keyboard and mouse to

CPU gap, 259
keyboards, 51–53
keyword search, 71, 90, 177
“kill ‘em if they stray”

approach, 80
Kissinger, Henry, 229
kluge action, 135

L

language, computer, 50–61
buttons, 50–51
grep, 264–65
input devices, 60–61
Java processing

language, 178, 181
joysticks, 51
keyboards, 51–53
light pens and other

devices, 61–62
mouse, 53–59
voice input, 59–60

language design, 62–68
complex mouse

expressions, 67–68
extending sequentiality, 68
gizmos, 67
history of, 273–77
maps, 65–67
menus, 63–65
possible approaches to, 280–86
verb specification, 62–63

languages
changes in, 277–78
Creole, 283–86
dialects, 273
human-computer

interaction, 271
metaphors used in, 296
natural, 46, 272–73, 347
and play, 230
scripting, 266–69

6490 AID Index  11/1/02  5:28 PM  Page 377



378 Index

law, and play, 229, 240
LCD (liquid-crystal display), 186–89
lead designer, 149–50, 152, 193
library, Web viewed as, 176–77
lifestyle, adjustment of, 364–65
light pens, 61–62
linearizing images, 156
lines, 34–35
linguistics, 271–90. See language

and clipboard, 278–79
history of language

design, 273–77
lessons from, 277–78
natural language, 272–73
possible approaches

to language design, 280–86
weakness in processing, 353
who designs community

language of
interaction, 286–90

link-based thinking, 41–42
linkmeshes, 215–23

historybooks, 222–23
state variables, 218–22

choosing, 221–22
designing, 219–21

links, 71, 179–81
liquid-crystal display (LCD), 186–89
listening, 45–68

See also anticipation in
interactivity design; egotism;
speaking; thinking; verbs

conversations with
computers, 49–50

dedicated devices, 188–89
input devices, 50–61

buttons, 50–51
input devices, 60–61
joysticks, 51
keyboards, 51–53
light pens, 61–62
mouse, 53–59
voice input, 59–60

language design, 62–68
complex mouse

expressions, 67–68
extending sequentiality, 68

gizmos, 67
maps, 65–67
menus, 63–65
verb specification, 62–63

natural languages, 46
subtasks of interactivity, 3, 5, 7
visual metaphor, 46–48

LogiGators (educational game), 170
looping, 218, 267–68
Lucas, George, 258

M

machine thinking, 32
machine thinking, vs. human

thinking, 31–32
Macintosh clocks, 143–44
Macintosh operating system, 121
maps, 65–67
marketing constraints, 164–65
marketplace, future of, 365–66
Martian Chronicles, The

(Bradbury), 3
mass media, difference from

interactivity, 315–22
math, soft. See soft math
mathematical notation, 274
Mayan’s technique, 36
McCloud, Scott, 259
measuring information flow, 73
media, difference from

interactivity, 315–22
Memory Manager (program), 121
mental model, 195
mentation and play, 230–31
menus, 63–65, 189
messages, 108–12

diagnostic messages, 127–28
emotions conveyed by, 110,

237–38
error messages, 234–35
not chastising user with, 234–35
not feigning infallibility, 117–18
using Normal English in, 117

6490 AID Index  11/1/02  5:28 PM  Page 378



Index 379

metaphors, 36–39, 291–301
application of, 298–301
bureaucratic, 39
business, 38
creating, 297–98
economic, 38
emotional, 39
extending existing, 298
geometric, 37–38
importance of, 291–92
in language, 272
metaphorical

transformation, 291–92
musical, 38
physical, 38
solutions, 36
spatial, 37–38
transformation, 291–92
visual, 46–48

mice. See mouse
military strategy games, 162
minute setting, 142
misfires, 304–5
misogyny, 354–55
mistakes. See bloopers in

interactivity design
Moby Dick (Melville), 327
modal input, 280
monitors, computer.

See screens, computer
monitor-to-eyeball gap, carrying

indirectors across gaps, 257
Morse-code-type construct, 256
mouse, 53–59

buttons on, 55, 124
complex expressions of, 67–68
as interaction, 53–54
vocabulary size of, 54–55

movies, 9
multimedia, 12
multi-step processes, 72
music, 27
musical metaphor, 38
musical notation, 273–74

N

narrative abstraction, 341–44
natural languages, 46, 272–73

attempts to replace with
designed languages, 273–77

clumsiness with subjunctive
thinking, 347

negativity, rule of, 87
nervous system, 249, 348
nested menu, 64
neural circuitry, 291–92, 352
Newton (PDA), 68
Ninth Symphony (Beethoven), 36
NNW (north-northwest) arrow

cursor, 57
nodes. See linkmeshes; storytrees
non- interactivity, 9–10

vs. interactive, 8–9
non- interactive

expressions, 43–44
non-technical designers, 32, 156
NorthernLight.com

(search engine), 72
north-northwest (NNW) arrow

cursor, 57
nouns, 208, 209–10
numbers

referring to in programs, 259–60
soft, 195–96

O

objects. See nouns
obstructionist stories, 80
operating systems, 336
operations, in Basic English, 275
operations per datum, 210–12
options. See verbs
organizational charts, 150–51
OS (operating system), 336
output. See speaking
over-specified depiction,

effects of, 264–65

6490 AID Index  11/1/02  5:28 PM  Page 379



380 Index

P

Pac-Man (game), 219
Page Setup box, 127
paged menus, 189
paidaia (frolic), 225, 238, 240–41
painting programs, 171
palette, 65
Palm Pilot (PDA), 68
Panopticon (word wheel), 277
paper money illustration, 251–52
parsers, text, 86
parsing, 280–83
participation, difference from

interaction, 9
pattern recognition, 32, 200,

291–92, 348, 355
pens, light, 61
Performance Specifications

document, 152
personal anticipation, 306–7
personal finance programs, 212
personal thinking styles, 213
“Phaedrus” (Plato), 8–9
“philosophical languages,” 274
phones, cellular, 186–87
photo-retouching

programs, 125, 171, 211, 294
physical metaphor, 38
picture element, 20
pictures, drawing. See architectures
piezoelectric buzzers, 187
pixels, 20, 21–22, 186
pixel-targeting cursor, 57
Plato, 8–9, 354
play, 225–41

applying to educational
software, 169–71

applying to interactivity
design, 233–37

competitive, 240–41
and culture, 228–30
dark side of, 238–41
design experiments, 237–38
and evolution, 228
historical roots of, 227
human desire for, 169–70

and language, 230
and mentation, 230–31
overview, 225–26
prejudice against, 232–33
provision for safety, 232

playful experimentation, 95
plays, 10
plot, 323–24, 327
pointers, 261
polishing phase, 155
politeness, 116–17
political abstraction, 246–47
pop-up animation, 25–26
pop-up menus, 25, 65, 87, 281
portable PIMs, 184
preferences, 87–88
preponderance, 308
Preppies (computer game), 27
prerecorded voice output, 188
primary data windows, 108
Principle of Equivalence, 231
Print dialog box, 127
printed books, 8–9
priorities, setting, 103
privacy

not intruding in user’s, 234
and user data, 309–12

probabilistic anticipation,
implementing, 308

problems. See bloopers
process intensive thinking, 207–13

argument against, 212–13
crunch-per-bit ratio, 210–12
vs. data intensity, 210
duality, 208–9
and educational software

design, 168
and indirect control, 327
nounism, 209–10
and personal thinking styles, 213

programming
democratizing, 359
indirection in, 259–62
lack of accountability, 192
languages for, making

simpler, 359–60
looping, 218
why learn, 191–94

6490 AID Index  11/1/02  5:28 PM  Page 380



Index 381

progress reports, 109
project manager, 150
project team, 150–52
pull-down menus, 64
pushbuttons, 124. See also buttons
puzzle games, 161

Q

qualifications for designing, 152
qualities, in Basic English, 274
quantum mechanics, 325
querying databases, 72
Quicken (personal finance

program), 212

R

radio buttons, 67, 124
RAM, 100–101, 235–37
random processes, 36–37
randomness, 325
ratio of operations per datum, 210
Read The Manual (RTFM), 50, 185
reality

distorting, 43
operational definition of, 207

reasoning
social, 163
verbal, 162–63

rectangle-selection cursor, 57
relativity, theory of, 231
resolution

color, 22–23
screen, 21–22

resource fork, 135
resource management games, 162
responses, delayed, 123–24
reversibility through undo, 326
revolution, interactivity, 14
reworded menu items, 126
Robinett, Warren, 170
role-playing games, 162
Romeo and Juliet (Shakespeare),

340–41
rotation, 25

RTFM (Read The Manual),
50, 52, 185

rule of negativity, 87
rules, design. See design guidelines

S

safety for play, 232
ScanDisk (program), 120
science/engineering vs.

arts/humanities, 331–37
artsy people, 334–35

feelings toward
science/engineering,
332–33

future of, 336
need for in software

development, 335–36
recommendations for, 337
why don’t program, 334–35

technical people
feelings toward

arts/humanities, 331–32
recommendations for, 337

screens, computer, 21–22
gaps in interactive loop, 256–57
resolutions of, 21–22
size vs. pixel count, 21–22
touch-sensitive

screen, 61, 68, 189
vertical monitor screen, 61
windows, fitting into five

categories, 108–11
scripting languages, 266–69
scroll boxes, 124
scrollbars, 67, 124
scrolling menus, 65
search engines, 71, 90, 177
searches, keyword, 71
secondary devices, 184
secondary keywords, 72
“secret” icons, 121–22
security issue, 309–12
Seneca, 9
sensory inputs, processing, 348

6490 AID Index  11/1/02  5:28 PM  Page 381



382 Index

sequential thinking, 349–57
built on pattern recognition

neural circuitry, 347–51
effect of programming

on, 356–60
importance of, 349
manifestations for human

adaptability, 348–50
and misogyny, 352–55
and writing, 350–52

sequentiality, extending, 68
Sesame Street (television

program), 170
settings, unclear, 125–26
Shepard, Alan, 229
simulations, 179, 195.

See also soft math
single-click activator cursor, 57
single-tone buzzers, 187
sketching, 156
Slow button, 140
Snow, C.P., 331
social reasoning, 163
society, future of, 361–67

audience development, 364
complexity of

interrelationships, 365
from computing to

interactivity, 366–67
design expertise, 364
human limitations, 363
opportunistic adjustment of

lifestyle and workstyle,
364–65

perception of adequacy, 363
seven lessons for, 367
short-term, 366
technological progress in,

362–63
winner-takes-all marketplace,

365–66
soft math, 195–204

applicability, 199–200
example of, 200–201
rules of, 202–4
soft formulas for, 197–98
soft numbers for, 195–96

software design
convergent iteration, 173–75
educational, 165–71

abstraction in, 252
for early learning, 165–66
educational

simulation, 165–66
eschew exposition, 166–67
learn by playing, 169–71
process- intensive

thinking, 168–69
email software, 300–301
speeding up software, 100–101
user tasks and computer

actions, 171–75
voice recognition, 59–60

sound output, 27, 187–88
spatial metaphor, 37–38
speaking, 19–29

See also anticipation in
interactivity design; egotism;
listening; thinking; verbs

applying to indirection, 262–64
color depth, 22–23
for dedicated devices, 186–88
frame rate, 24–25
full-motion animation, 26
hardware for, 60
pixel count, 20
pop-up animation, 25–26
screen size vs. pixel count, 21–22

speaking, (continued)
sound output, 27

speech synthesis, 27–28
subtasks of interactivity, 3, 5, 7
terminology, 19
too much, 28–29, 96–97
on Web, 176

special relativity, 231
specifications, 152–53, 154
specifications document, 153–54
speed

of Internet connection, 176
of software, improving, 100–101

spreadsheets, 17, 171, 173, 250
staircasing, 23

6490 AID Index  11/1/02  5:29 PM  Page 382



Index 383

standard socializing methods,
for play, 232

standards committees, 285
Star Wars (film), 258
state diagram, 83
state variables, 216, 218–22
stories, obstructionist, 80
storyboarding technique, 156–57
storylines, 76–79. See also

linkmeshes; storytrees
storytelling, 163, 208–9

applying to interactive design
with plot, 326

“engine” for, 326, 345
problem from, 200

storytrees, 77–79
See also linkmeshes
accessible states, 84, 88–90, 95
combinatorial schemes, 81–82
conceivable states, 84–87
Crawford diagram, 83
foldback, 76
fullness and richness, 82
hand-wired, 81, 89–90
“kill ‘em if they stray”

approach, 80
obstructionist stories, 80

strategy games, 162
“stupid thinking,” 120–21
Style menu, 64
subcategories, for search

engine results, 72
subjunctive thinking.

See sequential thinking
subtraction, 202–3
symmetry of information

contribution, 70
synthesized voice output, 188

T

tabulation, 250
tactile feedback, 189
task responsibilities,

poorly defined, 125–26
team coordination, 156
technical director, 150

Technical Specifications
document, 153–54

technical-oriented people
feelings toward arts/

humanities, 331–32
recommendations for, 337

technological advancement
approach, 162–65

technological tricks, 95–96
technology, future of, 361–67

audience development, 364
complexity of

interrelationships, 365
design expertise, 364
human limitations on use, 363
long-term, 366–67
opportunistic adjustment of

lifestyle and
workstyle, 364–65

perception of adequacy, 363
seven lessons for, 367
short-term, 366
technological progress

in, 362–63
winner-takes-all marketplace,

365–66
temporal discontinuity, 25
temporal irreversibility, 325
testing, convergent, 155
text

color depth, 22–23
pixels in, 20

text insertion cursor, 57
text lay out, 34–35
text parsers, 86
textual representation, 259
theoretical approach, 266
theory of relativity, 231
things, in Basic English, 275–76
thinking, 31–44

See also anticipation in
interactivity design

algorithms, 35–39
“branching thinking,” 180
closure, 42–44
data structures, 39–40
for dedicated devices, 188

6490 AID Index  11/1/02  5:29 PM  Page 383



384 Index

thinking, (continued)
human vs. machine, 31–32
lines, 34–35
link-based, 41–42
machine, 32
misogyny, 354–55
need for on Web, 176–77
pattern recognition, 32, 291–92,

348, 355
process intensive

thinking, 207–13
argument against, 212–13
crunch-per-bit ratio, 210–12
vs. data intensity, 210
duality, 208–9
and educational software

design, 168
and indirect control, 327
nounism, 209–10
and personal thinking

styles, 213
sequential, 349–57, 354–55

built on pattern recognition
neural circuitry, 347–51

effect of programming on,
356–60

importance of, 349
manifestations for human

adaptability, 348–50
and misogyny, 352–55
pattern recognition, 348
and writing, 350–52

significance of, 40–42
“stupid,” 120–21
subtasks of interactivity, 3, 5, 7

Time button, 140
timing of

interactivity, 98–101, 123–24
tonality, 27–28
tooltips, 106, 123–24

benefits of, 56
disadvantages of, 57, 122, 123
early use of, 106
overview, 25–26
time delay of, 122

top-down design, 32
touch-sensitive screen, 61, 68, 189

touch-typing, 305
translation, 24
tree structures, 180.

See also linkmeshes
Tusculan Disputations (Cicero), 9
typing, 305

U

Uncertainty Principle, 325
Understanding Comics

(McCloud), 259
Undo command, 235–37, 326
user activity, historybook of, 222–23
user interface, 10–11
user interface consultant, 150
user manuals, 185
users, anticipating desires

of, 307, 309

V

values, unclear, 125–26
variable simulations, 252
variables, increasing

number of, 88–89
VCR clock, 144–47
verb specification, 62–63
verbal reasoning, 162–63
verbs, 101–2, 208, 213

exceptions to rule, 95
for games, 163–64
importance of starting

with, 93–95
and nouns, 208
organize into groups

design the loop as a
whole, 105–6

making square
structure, 103–5

not setting up false
expectations, 106–7

offering solutions, 111–12
prioritizing by frequency

used, 102–3
saying what you mean, 107–8

6490 AID Index  11/1/02  5:29 PM  Page 384



Index 385

verisimilitude, 33–34
vertical link, 180
vertical monitor screen, 61
vibration, 25
videogames. See game design
VisiCalc (first spreadsheet), 17, 173,

250
visual metaphor, 46–48
vocabularies, “context-free,” 274–75
voice output, 188
voice recognition

software, 59–60, 366
voice tonality, 27–28
volition, discrepancy of, 239

W

Walker, Dave, 136
watch cursor, 57
watches, 141–42
wave-particle duality, 208
Web, the, 175–81

and abstraction, 251
bandwidth issues, 41, 176
browsing, 179–81
future of, 41, 181–82
overloading web pages, 119
and soft math, 200
strategies for improving, 176–79

windows
alternate, 25
primary data windows, 108
screen, 108–11

Windows 95 operating system,
135–37, 144

women
for customer support, 333
game design for, 163
and sequential thinking, 354–55

word processing, advancement
of, 250

word processor design vs. game
design, 83–90

criterion for excellence, 84–85
decreasing number of

conceivable states, 85–87
hand-wired branching, 81, 89–90
increasing number of accessible

states, 88
increasing number

variables, 88–89
replacing boolean variables with

arithmetic variables, 88–89
use indirection, 90

WORDPRO.EXE. (program), 86
workstyle, adjustment of, 364–65
wristwatches, 140
writing, 352–68

and computer programming,
356–60

development of, 352
in Greco-Roman era, 353–54
modern-day use, 355
non- interactivity of, 8–9
in Renaissance era, 355
and sequential

reasoning, 354–55
and subjunctive thinking, 356–58

Z

zero, division by, 203–4

6490 AID Index  11/1/02  5:29 PM  Page 385



JIN SATO’S LEGO® MINDSTORMS™
The Master’s Technique

by jin sato

Inspire the master builder in you! Jin Sato, the creator of MIBO, the Lego Hall of
Fame robotic dog, teaches you how to think about and build unique robots with the
LEGO MINDSTORMS kit.

2002, 364 PP., $24.95 ($37.95 CDN)
ISBN 1-886411-56-5

JOE NAGATA’S LEGO® MINDSTORMS™ IDEA BOOK
by joe nagata

Over 250 step-by-step illustrations show how to build 10 cool robots using LEGO
MINDSTORMS, with ideas for building many more.

2001, 194 PP., FOUR-COLOR INSERT, $21.95 ($32.95 CDN)
ISBN 1-886411-40-9

PROGRAMMING LINUX GAMES
Building Multimedia Applications with SDL, OpenAL™, and Other APIs

by loki software, inc. with john r. hall

This complete guide to developing Linux games discusses important multimedia
toolkits (including Simple DirectMedia Layer) and teaches the basics of Linux game
programming.

2001, 426 PP., $39.95 ($59.95 CDN)
ISBN 1-886411-49-2

More No-Nonsense Books from

6490 AID Cat/Updates  11/1/02  5:33 PM  Page 386



P h o n e :

1 (800) 420-7240 or
(415) 863-9900
Monday through Friday,
9 a.m. to 5 p.m. (PST)

Fa x :

(415) 863-9950
24 hours a day,
7 days a week

E m a i l :

sales@nostarch.com

W e b :

http://www.nostarch.com

M a i l :

No Starch Press, inc.
555 De Haro Street, Suite 250
San Francisco, CA 94107
USA

D
istributed in the U

.S. by P
ublishers G

roup W
est

STEAL THIS COMPUTER BOOK 2
What They Won’t Tell You About the Internet

by wallace wang

An offbeat, non-technical book that tells readers what hackers do, how they do it,
and how to protect themselves. Includes coverage of viruses, cracking, and password
theft, Trojan Horse programs, illegal copying of MP3 files, computer forensics, and
encryption. The CD-ROM contains over 200 anti-hacker and security tools for
Windows, Macintosh, and Linux.

2000, 462 PP., W/ CD-ROM, $24.95 ($38.95 CDN)
ISBN1-886411-42-5

THE BOOK OF JAVASCRIPT
A Practical Guide to Interactive Web Pages

by thau!

Rather than offer cut-and-paste solutions, this tutorial/reference focuses on under-
standing JavaScript, and shows web designers how to customize and implement
JavaScript on their sites. The CD-ROM includes code for each example in the book,
script libraries, and relevant software.

2000, 397 PP. W/CD-ROM, $29.95 ($46.50 CDN)
ISBN 1-886411-36-0

6490 AID Cat/Updates  11/1/02  5:33 PM  Page 387



U P D A T E S
Visit http://www.nostarch.com/interactive_updates.htm for updates, errata, and
other information.

6490 AID Cat/Updates  11/1/02  5:33 PM  Page 388


	Preliminaries
	What Exactly Is Interactivity?
	Why Bother With Interactivity?
	Speaking
	Thinking
	Listening
	The Interactive Loop
	Architectures
	Guidelines
	Bloopers
	Clock Setting
	The Design Process
	Advice For Specific Fields
	Dedicated Devices
	Why Learn Programming?
	Soft Math
	Process Intensity
	Linkmeshes
	Play
	Abstraction
	Indirection
	Linguistics
	Metaphor
	Anticipation
	A History Of Interactivity
	Control Versus Interactivity
	The Two-cultures Problem
	Interactive Storytelling
	Subjunctivity
	Futures
	Index

